(2)試求出的值, 查看更多

 

題目列表(包括答案和解析)

求出一個(gè)數(shù)學(xué)問(wèn)題的正確結(jié)論后,將其作為條件之一,提出與原來(lái)問(wèn)題有關(guān)的新問(wèn)題,我們把它稱(chēng)為原來(lái)問(wèn)題的一個(gè)“逆向”問(wèn)題.
例如,原來(lái)問(wèn)題是“若正四棱錐底面邊長(zhǎng)為4,側(cè)棱長(zhǎng)為3,求該正四棱錐的體積”.求出體積
16
3
后,它的一個(gè)“逆向”問(wèn)題可以是“若正四棱錐底面邊長(zhǎng)為4,體積為
16
3
,求側(cè)棱長(zhǎng)”;也可以是“若正四棱錐的體積為
16
3
,求所有側(cè)面面積之和的最小值”.
試給出問(wèn)題“在平面直角坐標(biāo)系xoy中,求點(diǎn)P(2,1)到直線3x+4y=0的距離.”的一個(gè)有意義的“逆向”問(wèn)題,并解答你所給出的“逆向”問(wèn)題.

查看答案和解析>>

17.求出一個(gè)數(shù)學(xué)問(wèn)題的正確結(jié)論后,將其作為條件之一,提出與原來(lái)問(wèn)題有關(guān)的新問(wèn)題,我們把它稱(chēng)為原來(lái)問(wèn)題的一個(gè)“逆向”問(wèn)題.

    例如,原來(lái)問(wèn)題是“若正四棱錐底面邊長(zhǎng)為4,側(cè)棱長(zhǎng)為3,求該正四棱錐的體積”.求出體積后,它的一個(gè)“逆向”問(wèn)題可以是“若正四棱錐底面邊長(zhǎng)為4,體積為,求側(cè)棱長(zhǎng)”;也可以是“若正四棱錐的體積為,求所有側(cè)面面積之和的最小值”.

    試給出問(wèn)題“在平面直角坐標(biāo)系中,求點(diǎn)到直線的距離.”的一個(gè)有意義的“逆向”問(wèn)題,并解答你所給出的“逆向”問(wèn)題.

查看答案和解析>>

求出一個(gè)數(shù)學(xué)問(wèn)題的正確結(jié)論后,將其作為條件之一,提出與原來(lái)問(wèn)題有關(guān)的新問(wèn)題,我們把它稱(chēng)為原來(lái)問(wèn)題的一個(gè)“逆向”問(wèn)題.
例如,原來(lái)問(wèn)題是“若正四棱錐底面邊長(zhǎng)為4,側(cè)棱長(zhǎng)為3,求該正四棱錐的體積”.求出體積后,它的一個(gè)“逆向”問(wèn)題可以是“若正四棱錐底面邊長(zhǎng)為4,體積為,求側(cè)棱長(zhǎng)”;也可以是“若正四棱錐的體積為,求所有側(cè)面面積之和的最小值”.
試給出問(wèn)題“在平面直角坐標(biāo)系xoy中,求點(diǎn)P(2,1)到直線3x+4y=0的距離.”的一個(gè)有意義的“逆向”問(wèn)題,并解答你所給出的“逆向”問(wèn)題.

查看答案和解析>>

出定義在(0,+∞)上的三個(gè)函數(shù):f(x)=lnx,g(x)=x2-af(x),h(x)=x-a
x
,已知g(x)在x=1處取極值.
(Ⅰ)確定函數(shù)h(x)的單調(diào)性;
(Ⅱ)求證:當(dāng)1<x<e2時(shí),恒有x<
2+f(x)
2-f(x)
成立;
(Ⅲ)把函數(shù)h(x)的圖象向上平移6個(gè)單位得到函數(shù)h1(x)的圖象,試確定函數(shù)y=g(x)-h1(x)的零點(diǎn)個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

出定義在(0,+∞)上的三個(gè)函數(shù):f(x)=lnx,g(x)=x2-af(x),數(shù)學(xué)公式,已知g(x)在x=1處取極值.
(Ⅰ)確定函數(shù)h(x)的單調(diào)性;
(Ⅱ)求證:當(dāng)1<x<e2時(shí),恒有數(shù)學(xué)公式成立;
(Ⅲ)把函數(shù)h(x)的圖象向上平移6個(gè)單位得到函數(shù)h1(x)的圖象,試確定函數(shù)y=g(x)-h1(x)的零點(diǎn)個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

一. 填空題(每題4分,共48分)

1. {0};   2. 四;   3. 12;   4. 0;   5. 4;   6. 理、文7;   7. 理2a、文4;

8. 0.25;    9. 126;    10. 18;    11. ;    12. (或).

二.選擇題(每題4分,共16分)

13.D;  14.B;  15.C;  16.理B、文B.

三. 解答題.  17.(本題滿分12分)解:由已知得     (3分)

,  ∴           (6分)

,即,∴         (9分)

的面積S=.            (12分)

18.(本題滿分12分)解:∵,∴       (5分)

,欲使是純虛數(shù),

=                      (7分)
   ∴,  即                     (11分)
   ∴當(dāng)時(shí),是純虛數(shù).                      (12分)

19.(本題滿分14分,第1小題滿分9分,第2小題滿分5分)

解:(1)依題意設(shè),則,                (2分)

       (4分)    而,

,即,    (6分)    ∴       (7分)

從而.                            (9分)

(2)平面

∴直線到平面的距離即點(diǎn)到平面的距離           (2分)

也就是的斜邊上的高,為.                (5分)

20.(本題滿分14分,第1小題滿分8分,第2小題滿分6分)

解:(1)不正確.                          (2分)
   沒(méi)有考慮到還可以小于.                  (3分)
   正確解答如下:
   令,則,
   當(dāng)時(shí),,即                  (5分)
   當(dāng)時(shí),,即                  (7分)
   ∴,即既無(wú)最大值,也無(wú)最小值.           (8分)

(2)(理)對(duì)于函數(shù),令
  ①當(dāng)時(shí),有最小值,,                   (9分)

當(dāng)時(shí),,即,當(dāng)時(shí),即

,即既無(wú)最大值,也無(wú)最小值.           (10分)
  ②當(dāng)時(shí),有最小值,, 

此時(shí),,∴,即,既無(wú)最大值,也無(wú)最小值       .(11分)
  ③當(dāng)時(shí),有最小值,,即   (12分)
,即,
∴當(dāng)時(shí),有最大值,沒(méi)有最小值.             (13分)
∴當(dāng)時(shí),既無(wú)最大值,也無(wú)最小值。
 當(dāng)時(shí),有最大值,此時(shí);沒(méi)有最小值.      (14分)

(文)∵,    ∴             (12分)

∴函數(shù)的最大值為(當(dāng)時(shí))而無(wú)最小值.     (14分)

21.(本滿分16分,第1、2小題滿分各4分,第3小題滿分8分)

解:(1)                            (4分)

(2)由解得                            (7分)

所以第個(gè)月更換刀具.                                       (8分)

(3)第個(gè)月產(chǎn)生的利潤(rùn)是:   (9分)

個(gè)月的總利潤(rùn):(11分)

個(gè)月的平均利潤(rùn):     (13分)

 且

在第7個(gè)月更換刀具,可使這7個(gè)月的平均利潤(rùn)最大(13.21萬(wàn)元) (14分)此時(shí)刀具厚度為(mm)                  (16分)

22.(本題滿分18分,第1、2小題滿分各4分,第3小題滿分10分)

解:(1)              (4分)

(2)各點(diǎn)的橫坐標(biāo)為:           (8分)

(3)過(guò)作斜率為的直線交拋物線于另一點(diǎn),            (9分)

則一般性的結(jié)論可以是:

點(diǎn) 的相鄰橫坐標(biāo)之和構(gòu)成以為首項(xiàng)和公比的等比數(shù)列(或:點(diǎn)無(wú)限趨向于某一定點(diǎn),且其橫(縱)坐標(biāo)之差成等比數(shù)列;或:無(wú)限趨向于某一定點(diǎn),且其橫(縱)坐標(biāo)之差成等比數(shù)列,等)(12分)

證明:設(shè)過(guò)點(diǎn)作斜率為的直線交拋物線于點(diǎn)

          得;       

點(diǎn)的橫坐標(biāo)為,則               (14分)

于是兩式相減得:            (16分)

=  

故點(diǎn)無(wú)限逼近于點(diǎn)      

同理無(wú)限逼近于點(diǎn)                          (18分)

 

 

 


同步練習(xí)冊(cè)答案