設函數(shù).已知它在x= -2時有極值.且過曲線上的點的切線方程為. 查看更多

 

題目列表(包括答案和解析)

設函數(shù),已知它們在x=1處的切線互相平行.
(1)求b的值;
(2)當x>0時,求證:x2-2lnx≥1;
(3)若函數(shù),且方程F(x)=a2有且僅有四個解,求實數(shù)a的取值范圍.

查看答案和解析>>

設函數(shù),已知f(x)在x=1處有極值.
(1)求實數(shù)a的值;
(2)當(其中e是自然對數(shù)的底數(shù))時,證明:e(e-x)(e+x-6)+4≥x4
(3)證明:對任意的n>1,n∈N*,不等式恒成立.

查看答案和解析>>

設函數(shù),已知f(x)在x=1處有極值.
(1)求實數(shù)a的值;
(2)當(其中e是自然對數(shù)的底數(shù))時,證明:e(e-x)(e+x-6)+4≥x4;
(3)證明:對任意的n>1,n∈N*,不等式恒成立.

查看答案和解析>>

 

    設函數(shù),已知曲線在點處在直線相切。

   (Ⅰ)求的值;

   (Ⅱ)求函數(shù)的單調(diào)區(qū)間與極值點。

 

 

 

 

 

 

查看答案和解析>>

設函數(shù)f(x)的定義域為D,如果存在正實數(shù)k,使對任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,則稱函數(shù)f(x)在D上的“k階增函數(shù)”.已知f(x)是定義在R上的奇函數(shù),且當x>0時,x>0時,f(x)=|x-a|-a,其中a為正常數(shù),若f(x)為R上的“2階增函數(shù)”,
則實數(shù)a的取值范圍是( 。

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

答案

D

A

A

D

B

C

C

B

C

D

二、填空題

11.     cosx+sinx          _                   12.

13._____  -1____________                    14.

15.                   16.

17.

三、解答題

18.解:由橢圓的標準方程知橢圓的焦點為,離心率為………………3分

因為雙曲線與橢圓有相同的焦點,所以,雙曲線焦點在x軸上,c=4,………………2分

又雙曲線與橢圓的離心率之和為,故雙曲線的離心率為2,所以a=2………………4分

又b2=c2-a2=16-4=12。………………………………………………………………………2分

所以雙曲線的標準方程為!1分

19.解:p真:m<0…………………………………………………………………………2分

q真:……………………………………………………………2分

故-1<m<1!2分

都是假命題知:p真q假,………………………………………………4分

!4分

20.解:(1)設|PF2|=x,則|PF1|=2a-x……………………………………………………2分

,∴, ∴…………1分

,……………………………………………………………………2分

………………………………2分

(2)由題知a=4,,故………………………………………………1分

,…………………………………………………………………1分

……………………………………2分

,代入橢圓方程得,………………………………………2分

故Q點的坐標為,,。

…………………………………………………………………………………………………2分

21.解:(1)由函數(shù),求導數(shù)得,…1分

由題知點P在切線上,故f(1)=4,…………………………………………………………1分

又切點在曲線上,故1+a+b+c=4①…………………………………………………………1分

,故3+2a+b=3②………………………………………………………………1分

③……………………2分

……………………1分

(2)…………………………1分

x

-2

+

0

0

+

極大值

極小值

有表格或者分析說明…………………………………………………………………………3分

,…………………………………………………………2分

∴f(x)在[-3,1]上最大值為13。故m的取值范圍為{m|m>13}………………………2分

22.解:(1)由題意設過點M的切線方程為:,…………………………1分

代入C得,則,………………2分

,即M(-1,).………………………………………2分

另解:由題意得過點M的切線方程的斜率k=2,…………………………………………1分

設M(x0y0),,………………………………………………………………1分

由導數(shù)的幾何意義可知2x0+4=2,故x0= -1,……………………………………………2分

代入拋物線可得y0=,點M的坐標為(-1,)……………………………………1分

(2)假設在C上存在點滿足條件.設過Q的切線方程為:,代入

,

.………………………………………………………2分

時,由于,…………………2分

當a>0時,有

或  ;……………………………………2分

當a≤0時,∵k≠0,故 k無解!1分

若k=0時,顯然也滿足要求.…………………………………………1分

綜上,當a>0時,有三個點(-2+,),(-2-,)及(-2,-),且過這三點的法線過點P(-2,a),其方程分別為:

x+2y+2-2a=0,x-2y+2+2a=0,x=-2。

當a≤0時,在C上有一個點(-2,-),在這點的法線過點P(-2,a),其方程為:x=-2!3分

 

 

 

 

 


同步練習冊答案