題目列表(包括答案和解析)
如圖是某直三棱柱(側(cè)棱與底面垂直)被削去上底后的直觀圖與三視圖中的側(cè)(左)視圖、俯視圖,在直觀圖中,是的中點(diǎn),側(cè)(左)視圖是直角梯形,俯視圖是等腰直角三角形,有關(guān)數(shù)據(jù)如圖所示.
(1)求出該幾何體的體積;
(2)若是的中點(diǎn),求證:∥平面;
(3)求證:平面⊥平面.
19.(本小題滿分14分)如圖所示,已知是直角梯形,,,
,平面.
(1) 證明:;
(2) 若是的中點(diǎn),證明:∥平面;
(3)若,求三棱錐的體積.
如圖:三棱錐中,^底面,若底面是邊長(zhǎng)為2的正三角形,且與底面所成的角為.若是的中點(diǎn),則三棱錐的體積為( ).
A.2 B.3 C.6 D.
(本題滿分14分)如圖:多面體中,三角形是邊長(zhǎng)為4的正三角形,,平面,.
(1)若是的中點(diǎn),求證:;
(2)求平面與平面所成的角的余弦值.
如圖,四棱錐中,底面是菱形,,,是的中點(diǎn),點(diǎn)在側(cè)棱上.
(1)求證:⊥平面;
(2)若是的中點(diǎn),求證://平面;
(3)若,試求的值.
天津精通高考復(fù)讀學(xué)校數(shù)學(xué)教研組組長(zhǎng) 么世濤
一、選擇題 :1-4, BBBB ;5-8,DABD。
提示:1.
2.
3.用代替得
4.
5.,或
6.
7.略
8.
二、填空題:9.60; 10. 15:10:20 ; 11.; 12.;
13.0.74 ; 14. ①、;②、圓;③.
提示: 9.
10.,,
11.,
12.,,,
,
13.
14.略
三、解答題
15. 解:(1).
(2)設(shè)抽取件產(chǎn)品作檢驗(yàn),則,
,得:,即
故至少應(yīng)抽取8件產(chǎn)品才能滿足題意.
16. 解:由題意得,,原式可化為,
而
,
故原式=.
17. 解:(1)顯然,連接,∵,,
∴.由已知,∴,.
∵∽, ,
∴ 即 .
∴.
(2)
當(dāng)且僅當(dāng)時(shí),等號(hào)成立.此時(shí),即為的中點(diǎn).于是由,知平面,是其交線,則過(guò)作
。
∴就是與平面所成的角.由已知得,,
∴, , .
(3) 設(shè)三棱錐的內(nèi)切球半徑為,則
∵,,,,,
∴.
18. 解: (1) ,
(2) ∵ ,
∴當(dāng)時(shí),
∴當(dāng)時(shí),,
∵,,,.
∴ 的最大值為或中的最大者.
∵
∴ 當(dāng)時(shí),有最大值為.
19.(1)解:∵函數(shù)的圖象過(guò)原點(diǎn),
∴即,
∴.
又函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱,
∴, .
(2)解:由題意有 即,
即,即.
∴數(shù)列{}是以1為首項(xiàng),1為公差的等差數(shù)列.
∴,即. ∴.
∴ ,,,.
(3)證明:當(dāng)時(shí),
故
20. (1)解:∵,又,
∴. 又∵
,且
∴ .
(2)解:由,,猜想
(3)證明:用數(shù)學(xué)歸納法證明:
①當(dāng)時(shí),,猜想正確;
②假設(shè)時(shí),猜想正確,即
1°若為正奇數(shù),則為正偶數(shù),為正整數(shù),
2°若為正偶數(shù),則為正整數(shù),
,又,且
所以
即當(dāng)時(shí),猜想也正確
由①,②可知,成立.
(二)
一、1-4,AABB,5-8,CDCB;
提示: 1. 即
2. 即
3. 即,也就是 ,
4.先確定是哪兩個(gè)人的編號(hào)與座位號(hào)一致,有種情況,如編號(hào)為1的人坐1號(hào)座位,且編號(hào)為2的人坐2號(hào)座位有以下情形:
|