12. 如圖,在中..是邊上一點(diǎn)..則 ▲ . 查看更多

 

題目列表(包括答案和解析)

9、如圖,已知四邊形ABCD是平行四邊形,點(diǎn)P是平面ABCD外的一點(diǎn),則在四棱錐P-ABCD中,M是PC的中點(diǎn),在DM上取一點(diǎn)G,過(guò)G和AP作平面交平面BDM于GH.
求證:AP∥GH.

查看答案和解析>>

精英家教網(wǎng)如圖,四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD為正方形,BC=PD=2,E為PC的中點(diǎn),
CG
=
1
3
CB

(I)求證:PC⊥BC;
(II)求三棱錐C-DEG的體積;
(III)AD邊上是否存在一點(diǎn)M,使得PA∥平面MEG.若存在,求AM的長(zhǎng);否則,說(shuō)明理由.

查看答案和解析>>

如圖,在邊長(zhǎng)為a的正方體ABCD-A1B1C1D1中,E是棱AB上一點(diǎn),M是棱D1C1上一點(diǎn),則三棱錐M-DEC的體積是
 
精英家教網(wǎng)

查看答案和解析>>

如圖,在△ABC中,B=45°,D是BC邊上的一點(diǎn),AD=5,AC=7,DC=3,則AB的長(zhǎng)為
 

精英家教網(wǎng)

查看答案和解析>>

如圖有一張形狀為平行四邊形的紙片.其中AB=2BC=4,點(diǎn)E為AB中點(diǎn),∠B=120°,現(xiàn)把△AED沿DE折起到△PED位置.
(Ⅰ)當(dāng)PE⊥EC時(shí),證明:EC⊥面PDE
(Ⅱ)在把△AED沿DE折起的過(guò)程中.是否在PC上存在一個(gè)定點(diǎn)F,始終有BF∥面PDE?有則給予證明,沒(méi)有說(shuō)明理由.

查看答案和解析>>

 

第 一 部 分

 

一、填空題:

1.        2.          3.1            4.16

5.                                 6.               7.64           8.

9.25                                 10.①④            11.        12.

13.                          14.

二、解答題:

15.解:(Ⅰ)依題意:,

,解之得,(舍去)   …………………7分

(Ⅱ),∴  ,,  ………………………9分

∴    …………………………………11分

.      ……………………………………………14分

16.解:(Ⅰ)因?yàn)橹饕晥D和左視圖均為矩形、所以該三棱柱為直三棱柱.

連BC1交B1C于O,則O為BC1的中點(diǎn),連DO。

則在中,DO是中位線(xiàn),

∴DO∥AC1.                ………………………………………………………4分

∵DO平面DCB1,AC1平面DCB1

∴AC1∥平面CDB1.           ………………………………………………………7分

(Ⅱ)由已知可知是直角三角形,

∵  ,

∴  平面,平面,

∴  

∵  

∴  平面,

平面

∴  。

17.解:(Ⅰ)由題意知:,

一般地: ,…4分

∴  )!7分

(Ⅱ)2008年諾貝爾獎(jiǎng)發(fā)獎(jiǎng)后基金總額為:

 ,…………………………………………10分

2009年度諾貝爾獎(jiǎng)各項(xiàng)獎(jiǎng)金額為萬(wàn)美元, ………12分

與150萬(wàn)美元相比少了約14萬(wàn)美元。     …………………………………………14分

答:新聞 “2009年度諾貝爾獎(jiǎng)各項(xiàng)獎(jiǎng)金高達(dá)150萬(wàn)美元”不真,是假新聞!15分

18.解:(Ⅰ)圓軸交點(diǎn)坐標(biāo)為,

,,故,    …………………………………………2分

所以,

橢圓方程是:               …………………………………………5分

(Ⅱ)設(shè)直線(xiàn)軸的交點(diǎn)是,依題意

,

,

,

,

 

(Ⅲ)直線(xiàn)的方程是,…………………………………………………6分

圓D的圓心是,半徑是,……………………………………………8分

設(shè)MN與PD相交于,則是MN的中點(diǎn),且PM⊥MD,

……10分

當(dāng)且僅當(dāng)最小時(shí),有最小值,

最小值即是點(diǎn)到直線(xiàn)的距離是,…………………12分

所以的最小值是。  ……………………………15分

 

19.解:(Ⅰ)點(diǎn)的坐標(biāo)依次為,…,

,…,           ……………………………2分

,…,

共線(xiàn);則,

,

, ……………………………4分

,

,

所以數(shù)列是等比數(shù)列。          ……………………………………………6分

(Ⅱ)依題意,

,

兩式作差,則有:,   ………………………8分

,故,   ……………………………………………10分

即數(shù)列是公差為的等差數(shù)列;此數(shù)列的前三項(xiàng)依次為

,

,可得,

,或,或。           ………………………………………12分

數(shù)列的通項(xiàng)公式是,或,或。    ………14分

知,時(shí),不合題意;

時(shí),不合題意;

時(shí),;

所以,數(shù)列的通項(xiàng)公式是。  ……………………………………16分

 

20.解:(Ⅰ)函數(shù)定義域,

,    ……………………………………………4分

(Ⅱ),由(Ⅰ)

,,

單調(diào)遞增,

所以

設(shè),

,

,也就是。

所以,存在值使得對(duì)一個(gè),方程都有唯一解。………10分

(Ⅲ),

,

以下證明,對(duì)的數(shù)及數(shù),不等式不成立。

反之,由,亦即成立,

因?yàn)?sub>,

,這是不可能的。這說(shuō)明是滿(mǎn)足條件的最小正數(shù)。

這樣不等式恒成立,

恒成立,

∴  ,最小正數(shù)=4 !16分

 

 第二部分(加試部分)

21.(A)解:AD2=AE?AB,AB=4,EB=3      ……………………………………4分

△ADE∽△ACO,                ……………………………………………8分

CD=3                         ……………………………………………10分

(B)解:(Ⅰ),

所以點(diǎn)作用下的點(diǎn)的坐標(biāo)是!5分

(Ⅱ),

設(shè)是變換后圖像上任一點(diǎn),與之對(duì)應(yīng)的變換前的點(diǎn)是,

,

也就是,即

所以,所求曲線(xiàn)的方程是!10分

(C)解:由已知圓的半徑為,………4分

又圓的圓心坐標(biāo)為,所以圓過(guò)極點(diǎn),

所以,圓的極坐標(biāo)方程是!10分

(D)證明:

            ……………………………………6分

=2-

<2                              ……………………………………10分

 

 

 

22.解:(Ⅰ)∵,∴,

∴切線(xiàn)l的方程為,即.……………………………………………4分

(Ⅱ)令=0,則.令=0,則x=1.

 ∴A=.………………10分

23.解:(Ⅰ)記“該生在前兩次測(cè)試中至少有一次通過(guò)”的事件為事件A,則

P(A)=

答:該生在前兩次測(cè)試中至少有一次通過(guò)的概率為。 …………………………4分

(Ⅱ)參加測(cè)試次數(shù)的可能取值為2,3,4,

      ,

    ,

      ,    ……………………………………………7分

        故的分布列為:

2

3

4

     ……………………………………………10分

 

 

 


同步練習(xí)冊(cè)答案