要使在區(qū)間上為增函數(shù). 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)

(1)要使在區(qū)間(0,1)上單調(diào)遞增,試求a的取值范圍;

(2)若時,圖象上任意一點處的切線的傾斜角為,試求當時,a的取值范圍.

 

查看答案和解析>>

已知函數(shù)
(1)要使在區(qū)間(0,1)上單調(diào)遞增,試求a的取值范圍;
(2)若時,圖象上任意一點處的切線的傾斜角為,試求當時,a的取值范圍.

查看答案和解析>>

已知函數(shù)
(1)要使在區(qū)間(0,1)上單調(diào)遞增,試求a的取值范圍;
(2)若時,圖象上任意一點處的切線的傾斜角為,試求當時,a的取值范圍.

查看答案和解析>>

已知函數(shù)。

(1)要使在區(qū)間(0,1)上單調(diào)遞增,試求的取值范圍;

(2)當時,試求的解析式,使的極大值為,極小值為1;

(3)若時,圖像上任意一點處的切線的傾斜角為,試求當時,的取值范圍。

查看答案和解析>>

已知函數(shù),

(Ⅰ)若函數(shù)和函數(shù)在區(qū)間上均為增函數(shù),求實數(shù)的取值范圍;

(Ⅱ)若方程有唯一解,求實數(shù)的值.

【解析】第一問,   

當0<x<2時,,當x>2時,,

要使在(a,a+1)上遞增,必須

如使在(a,a+1)上遞增,必須,即

由上得出,當,上均為增函數(shù)

(Ⅱ)中方程有唯一解有唯一解

設(shè)  (x>0)

隨x變化如下表

x

-

+

極小值

由于在上,只有一個極小值,的最小值為-24-16ln2,

當m=-24-16ln2時,方程有唯一解得到結(jié)論。

(Ⅰ)解: 

當0<x<2時,,當x>2時,

要使在(a,a+1)上遞增,必須

如使在(a,a+1)上遞增,必須,即

由上得出,當上均為增函數(shù)  ……………6分

(Ⅱ)方程有唯一解有唯一解

設(shè)  (x>0)

隨x變化如下表

x

-

+

極小值

由于在上,只有一個極小值,的最小值為-24-16ln2,

當m=-24-16ln2時,方程有唯一解

 

查看答案和解析>>


同步練習冊答案