(Ⅰ)求證:數列為等比數列.并指出公比, 查看更多

 

題目列表(包括答案和解析)

數列{an}的前n項和為Sn(n∈N*),點(an,Sn)在直線y=2x-3n上,
(1)若數列{an+c}成等比數列,求常數c的值;
(2)數列{an}中是否存在三項,它們可以構成等差數列?若存在,請求出一組適合條件的項;若不存在,請說明理由.
(3)若bn=
1
3
an
+1,請求出一個滿足條件的指數函數g(x),使得對于任意的正整數n恒有
n
k=1
g(k)
(bk+1)(bk+1+1)
1
3
成立,并加以證明.(其中為連加號,如:
n
i-1
an=a1+a2+…+an

查看答案和解析>>

數列{an}的前n項和為Sn(n∈N*),點(an,Sn)在直線y=2x-3n上,
(1)若數列{an+c}成等比數列,求常數c的值;
(2)數列{an}中是否存在三項,它們可以構成等差數列?若存在,請求出一組適合條件的項;若不存在,請說明理由.
(3)若bn=+1,請求出一個滿足條件的指數函數g(x),使得對于任意的正整數n恒有成立,并加以證明.(其中為連加號,如:

查看答案和解析>>

若數列{an},{bn}中,a1=a,b1=b,
an=-2an-1+4bn-1
bn=-5an-1+7bn-1
,(n∈N,n≥2).請按照要求完成下列各題,并將答案填在答題紙的指定位置上.
(1)可考慮利用算法來求am,bm的值,其中m為給定的數據(m≥2,m∈N).右圖算法中,虛線框中所缺的流程,可以為下面A、B、C、D中的
ACD
ACD

(請?zhí)畛鋈看鸢福?BR>A、B、
C、D、

(2)我們可證明當a≠b,5a≠4b時,{an-bn}及{5an-4bn}均為等比數列,請按答紙題要求,完成一個問題證明,并填空.
證明:{an-bn}是等比數列,過程如下:an-bn=(-2an-1+4bn-1)+(5an-1-7bn-1)=3an-1-3bn-1=3(an-1-bn-1
所以{an-bn}是以a1-b1=a-b≠0為首項,以
3
3
為公比的等比數列;
同理{5an-4bn}是以5a1-4b1=5a-4b≠0為首項,以
2
2
為公比的等比數列
(3)若將an,bn寫成列向量形式,則存在矩陣A,使
an
bn
=A
an-1
bn-1
=A(A
an-2
bn-2
)=A2
an-2
bn-2
=…=An-1
a1
b1
,請回答下面問題:
①寫出矩陣A=
-24
-57
-24
-57
;  ②若矩陣Bn=A+A2+A3+…+An,矩陣Cn=PBnQ,其中矩陣Cn只有一個元素,且該元素為Bn中所有元素的和,請寫出滿足要求的一組P,Q:
P=
1 
1 
Q=
1
1
P=
1 
1 
,Q=
1
1
; ③矩陣Cn中的唯一元素是
2n+2-4
2n+2-4

計算過程如下:

查看答案和解析>>

在數列{an}中,a1=1,且對任意的k∈N*,a2k-1,a2k,a2k+1成等比數列,其公比為qk
(1)若qk=2(k∈N*),求a1+a3+a5+…+a2k-1;
(2)若對任意的k∈N*,a2k,a2k+1,a2k+2成等差數列,其公差為dk,設
①求證:{bk}成等差數列,并指出其公差;
②若d1=2,試求數列{dk}的前k項的和Dk

查看答案和解析>>

已知數列{an}的前n項和為Sn,且Sn=n-5an-85,n∈N*
(1)證明:{an-1}是等比數列;
(2)求數列{Sn}的通項公式.請指出n為何值時,Sn取得最小值,并說明理由.

查看答案和解析>>

一、選擇題:

1.D  2.D 3.D  4.C  5.A 6.D 7.B  8.C 9.B 10.B  11.D 12.D

二、填空題:

13、    14、  15、對任意使   16、2    17、

18、    19、   20、8      21、     22、40    23、   

24、4       25、    26、

三、解答題:

27解:(1)由,得

,

, ,

于是,

,即

(2)∵角是一個三角形的最小內角,∴0<,,

,則(當且僅當時取=),

故函數的值域為

28證明:(1)同理,

又∵       ∴平面. 

(2)由(1)有平面

又∵平面,    ∴平面平面

(3)連接AG并延長交CD于H,連接EH,則

在AE上取點F使得,則,易知GF平面CDE.

29解:(1),                     

,                         

。   

(2)∵

∴當且僅當,即時,有最大值。

,∴取時,(元),

此時,(元)。答:第3天或第17天銷售收入最高,

此時應將單價定為7元為好

30解:(1)設M

∵點M在MA上∴  ①

同理可得

由①②知AB的方程為

易知右焦點F()滿足③式,故AB恒過橢圓C的右焦點F(

(2)把AB的方程

又M到AB的距離

∴△ABM的面積

31解:(Ⅰ)  

所以函數上是單調減函數.

(Ⅱ) 證明:據題意x1<x2<x3,

由(Ⅰ)知f (x1)>f (x2)>f (x3),  x2=

即ㄓ是鈍角三角形

(Ⅲ)假設ㄓ為等腰三角形,則只能是

 

  ①         

而事實上,    ②

由于,故(2)式等號不成立.這與式矛盾. 所以ㄓ不可能為等腰三角形.

32解:(Ⅰ)

    

故數列為等比數列,公比為3.           

(Ⅱ)

                 

所以數列是以為首項,公差為 loga3的等差數列.

                           

=1+3,且

                           

    

(Ⅲ)

      

假設第項后有

      即第項后,于是原命題等價于

      

  故數列項起滿足.    

 


同步練習冊答案