題目列表(包括答案和解析)
下列命題中正確的是 ( )
A.若p∨q為真命題,則p∧q為真命題
B.“x=5”是“x2-4x-5=0”的充分不必要條件
C.命題“若x<-1,則x2-2x-3>0”的否定為:“若x≥-1,則x2-2x-3≤0”
D.已知命題p:∃x∈R,x2+x-1<0,則綈p:∃x∈R,x2+x-1≥0
已知是公差為d的等差數列,是公比為q的等比數列
(Ⅰ)若 ,是否存在,有?請說明理由;
(Ⅱ)若(a、q為常數,且aq0)對任意m存在k,有,試求a、q滿足的充要條件;
(Ⅲ)若試確定所有的p,使數列中存在某個連續(xù)p項的和式數列中的一項,請證明.
【解析】第一問中,由得,整理后,可得、,為整數不存在、,使等式成立。
(2)中當時,則
即,其中是大于等于的整數
反之當時,其中是大于等于的整數,則,
顯然,其中
、滿足的充要條件是,其中是大于等于的整數
(3)中設當為偶數時,式左邊為偶數,右邊為奇數,
當為偶數時,式不成立。由式得,整理
當時,符合題意。當,為奇數時,
結合二項式定理得到結論。
解(1)由得,整理后,可得、,為整數不存在、,使等式成立。
(2)當時,則即,其中是大于等于的整數反之當時,其中是大于等于的整數,則,
顯然,其中
、滿足的充要條件是,其中是大于等于的整數
(3)設當為偶數時,式左邊為偶數,右邊為奇數,
當為偶數時,式不成立。由式得,整理
當時,符合題意。當,為奇數時,
由,得
當為奇數時,此時,一定有和使上式一定成立。當為奇數時,命題都成立
已知,是橢圓左右焦點,它的離心率,且被直線所截得的線段的中點的橫坐標為
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設是其橢圓上的任意一點,當為鈍角時,求的取值范圍。
【解析】解:因為第一問中,利用橢圓的性質由得 所以橢圓方程可設為:,然后利用
得得
橢圓方程為
第二問中,當為鈍角時,, 得
所以 得
解:(Ⅰ)由得 所以橢圓方程可設為:
3分
得得
橢圓方程為 3分
(Ⅱ)當為鈍角時,, 得 3分
所以 得
設為實數,首項為,公差為的等差數列的前n項和為,滿足
(1)若,求及;
(2)求d的取值范圍.
【解析】本試題主要考查了數列的求和的運用以及通項公式的運用。第一問中,利用和已知的,得到結論
第二問中,利用首項和公差表示,則方程是一個有解的方程,因此判別式大于等于零,因此得到d的范圍。
解:(1)因為設為實數,首項為,公差為的等差數列的前n項和為,滿足
所以
(2)因為
得到關于首項的一個二次方程,則方程必定有解,結合判別式求解得到
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com