4.在各項都為正數(shù)的等比數(shù)列{an}中.a1=3.前三項的和為21.則a3+ a4+ a5= A.33 B.72 C.84 D.189 查看更多

 

題目列表(包括答案和解析)

84、在各項都為正數(shù)的等比數(shù)列{an}中,若首項a1=3,前三項之和為21,則a3+a4+a5=
84

查看答案和解析>>

3、在各項都為正數(shù)的等比數(shù)列{an}中,首項a1=3,前三項和為21,則a3+a4+a5=(  )

查看答案和解析>>

11、在各項都為正數(shù)的等比數(shù)列{an}中,若a5•a6=9,則log3a1+log3a2+log3a3+…+log3a10等于(  )

查看答案和解析>>

3、在各項都為正數(shù)的等比數(shù)列{an}中,a1=3,前三項的和等于21,則a4+a5+a6=( 。

查看答案和解析>>

在各項都為正數(shù)的等比數(shù)列{an}中,首項為3,前3項和為21,則a3+a4+a5=( 。

查看答案和解析>>

一、選擇題

1.C 解析:關(guān)于y軸的對稱圖形,可得

圖象,再向右平移一個單位,即可得的圖象,即的圖

2,4,6

2.A 解析:由題可知,故選A.

3.D 解析:上恒成立,即恒成立,故選D.

4.C  解析:令公比為q,由a1=3,前三項的和為21可得q2+q-6=0,各項都為正數(shù),所以q=2,所以,故選C.

5.C  解析:由圖可知,陰影部分面積.

6.A  解析:故在[-2,2]上最大值為,所以最小值為,故選A.

7.A  解析:y值對應(yīng)1,x可對應(yīng)±1,y值對應(yīng)4,x可對應(yīng)±2,故定義域共有{1,2},{1,-2},{-1,2},{-1,-2},{1,-1,2},{1,-1,-2},{1,2,-2},{-1,2,-2},{-,1,-2,2}共9種情況.

8.B  可采取特例法,例皆為滿足條件的函數(shù),一一驗證可知選B.

二、填空題:

9.答案:6   解析:∵     ∴a7+a­11=6.

10.答案a=3、2π  解析:的上半圓

面積,故為2π.

11.答案:20  解析:由數(shù)列相關(guān)知識可知

12.答案:

解析:由題可知 ,故定義域為

13.答案:2   解析:由a,b,c成等差數(shù)列知①,由②,

由c>b>a知角B為銳角,③,聯(lián)立①②③得b=2.

故當時,

三、解答題:

15.解:(Ⅰ)由題可知函數(shù)定義域關(guān)于原點對稱.

    當,

    則,

    ∴

    當

    則

   ∴

    綜上所述,對于,∴函數(shù)是偶函數(shù).

(Ⅱ)當x>0時,,

設(shè)

∴函數(shù)上是減函數(shù),函數(shù)上是增函數(shù).

(另證:當;

∴函數(shù)上是減函數(shù),在上是增函數(shù).

16.解:(Ⅰ)∵函數(shù)圖象過點A(0,1)、B(,1)

  ∴b=c

∵當

  ③

聯(lián)立②③得        

(Ⅱ)①由圖象上所有點向左平移個單位得到的圖象

②由的圖象上所有點的縱坐標變?yōu)樵瓉淼?sub>倍,得到

的圖象

③由的圖象上所有點向下平移一個單位,得到

的圖象

17.(1)證明:由題設(shè),得

又a1-1=1,

所以數(shù)列{an-n}是首項為1,且公比為4的等比數(shù)列.

(Ⅱ)解:由(Ⅰ)可知,于是數(shù)列{ an }的通項公式為

所以數(shù)列{an}的前n項和

18.分析:求停車場面積,需建立長方形的面積函數(shù). 這里自變量的選取十分關(guān)鍵,通常有代數(shù)和三角兩種設(shè)未知數(shù)的方法,如果設(shè)長方形PQCR的一邊長為x(不妨設(shè)PR=x),則另一邊長

這樣SPQCR=PQ?PR=x?(100-),但該函數(shù)的最值不易求得,如果將∠BAP作為自變量,用它可表示PQ、PR,再建立面積函數(shù),則問題就容易得多,于是可求解如下;

解:延長RP交AB于M,設(shè)∠PAB=,則

AM=90

    <strong id="sdqca"><rp id="sdqca"><th id="sdqca"></th></rp></strong>

                 

          設(shè),   ∵

          ∴當,SPQCR有最大值

          答:長方形停車場PQCR面積的最大值為平方米.

          19.解:(Ⅰ)【方法一】由,

          依題設(shè)可知,△=(b+1)24c=0.

          .

          【方法二】依題設(shè)可知

          為切點橫坐標,

          于是,化簡得

          同法一得

          (Ⅱ)由

          可得

          依題設(shè)欲使函數(shù)內(nèi)有極值點,

          則須滿足

          亦即

          故存在常數(shù),使得函數(shù)內(nèi)有極值點.

          (注:若,則應(yīng)扣1分. )

          20.解:(Ⅰ)設(shè)函數(shù)

             (Ⅱ)由(Ⅰ)可知

          可知使恒成立的常數(shù)k=8.

          (Ⅲ)由(Ⅱ)知 

          可知數(shù)列為首項,8為公比的等比數(shù)列

          即以為首項,8為公比的等比數(shù)列. 則 

          .


          同步練習(xí)冊答案