本題共有3個小題.第1.3小題滿分各5分.第2小題滿分6分. 如果一個數(shù)列的各項都是實數(shù).且從第二項開始.每一項與它前一項的平方差是相同的常數(shù).則稱該數(shù)列為等方差數(shù)列.這個常數(shù)叫這個數(shù)列的公方差. (1)設(shè)數(shù)列是公方差為的等方差數(shù)列.求和的關(guān)系式, (2)若數(shù)列既是等方差數(shù)列.又是等差數(shù)列.證明該數(shù)列為常數(shù)列, (3) 設(shè)數(shù)列是首項為.公方差為的等方差數(shù)列.若將這種順 序的排列作為某種密碼.求這種密碼的個數(shù). 查看更多

 

題目列表(包括答案和解析)

(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分。

     已知函數(shù)的反函數(shù)。定義:若對給定的實數(shù),函數(shù)互為反函數(shù),則稱滿足“和性質(zhì)”;若函數(shù)互為反函數(shù),則稱滿足“積性質(zhì)”。

(1)       判斷函數(shù)是否滿足“1和性質(zhì)”,并說明理由;    

(2)       求所有滿足“2和性質(zhì)”的一次函數(shù);

(3)       設(shè)函數(shù)對任何,滿足“積性質(zhì)”。求的表達(dá)式。

查看答案和解析>>

(本題滿分16分)本題共有3個小題,第1小題滿分3分,第2小題滿分6分,

第3小題滿分7分.

已知雙曲線

(1)求雙曲線的漸近線方程;

(2)已知點的坐標(biāo)為.設(shè)是雙曲線上的點,是點關(guān)于原點的對稱點.

.求的取值范圍;

(3)已知點的坐標(biāo)分別為,為雙曲線上在第一象限內(nèi)的點.記為經(jīng)過原點與點的直線,截直線所得線段的長.試將表示為直線的斜率的函數(shù).

查看答案和解析>>

 (本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分、第3小題滿分6分.

設(shè),常數(shù),定義運算“”:,定義運算“”: ;對于兩點、,定義.

(1)若,求動點的軌跡

(2)已知直線與(1)中軌跡交于、兩點,若,試求的值;

(3)在(2)中條件下,若直線不過原點且與軸交于點S,與軸交于點T,并且與(1)中軌跡交于不同兩點P、Q , 試求的取值范圍.

查看答案和解析>>

(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分.

     已知函數(shù)的反函數(shù).定義:若對給定的實數(shù),函數(shù)互為反函數(shù),則稱滿足“和性質(zhì)”;若函數(shù)互為反函數(shù),則稱滿足“積性質(zhì)”.

(1)       判斷函數(shù)是否滿足“1和性質(zhì)”,并說明理由;

(2)       求所有滿足“2和性質(zhì)”的一次函數(shù);

(3)       設(shè)函數(shù)對任何,滿足“積性質(zhì)”.求的表達(dá)式.

查看答案和解析>>

(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分4分,第3小題滿分8分。

已知雙曲線C的中心是原點,右焦點為F,一條漸近線m:,設(shè)過點A的直線l的方向向量

(1)求雙曲線C的方程;

(2)若過原點的直線,且al的距離為,求K的值;

(3)證明:當(dāng)時,在雙曲線C的右支上不存在點Q,使之到直線l的距離為

查看答案和解析>>


同步練習(xí)冊答案