題目列表(包括答案和解析)
已知函數(shù),(),
(1)若曲線與曲線在它們的交點(1,c)處具有公共切線,求a,b的值
(2)當時,若函數(shù)在區(qū)間[k,2]上的最大值為28,求k的取值范圍
【解析】(1),
∵曲線與曲線在它們的交點(1,c)處具有公共切線
∴,
∴
(2)當時,,,
令,則,令,∴為單調遞增區(qū)間,為單調遞減區(qū)間,其中F(-3)=28為極大值,所以如果區(qū)間[k,2]最大值為28,即區(qū)間包含極大值點,所以
【考點定位】此題應該說是導數(shù)題目中較為常規(guī)的類型題目,考查的切線,單調性,極值以及最值問題都是課本中要求的重點內(nèi)容,也是學生掌握比較好的知識點,在題目中能夠發(fā)現(xiàn)F(-3)=28,和分析出區(qū)間[k,2]包含極大值點,比較重要
已知函數(shù)f(x)=-x3+ax2+b(a,b∈R).
(1)求函數(shù)f(x)的單調遞增區(qū)間;
(2)若對任意a∈[3,4],函數(shù)f(x)在R上都有三個零點,求實數(shù)b的取值范圍.
已知橢圓x2+=1的左、右兩個頂點分別為A、B.曲線C是以A、B兩點為頂點,離心率為的雙曲線,設點P在第一象限且在曲線C上,直線AP與橢圓相交于另一點T.
(1)求曲線C的方程;
(2)設點P、T的橫坐標分別為x1,x2,證明:x1·x2=1;
(3)設△TAB與△POB(其中O為坐標原點)的面積分別為S1與S2,且,求S-S的取值范圍.
b | a |
an+1 |
4 |
an |
4 |
an+1 |
4 |
an |
4 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com