數(shù)列{an}.{bn}分別是無(wú)窮等差.等比數(shù)列,數(shù)列{an}的前n項(xiàng)和,數(shù)列{bn}中, b3=4, b6=32. (1) 求數(shù)列{an}和{bn}的通項(xiàng)公式; (2)求數(shù)列的所有項(xiàng)之和; (3)記{cn}(n)是數(shù)列{an}和{bn}的所有相同項(xiàng)組成的數(shù)列,求{cn}的 通項(xiàng)公式. 查看更多

 

題目列表(包括答案和解析)

(本小題滿(mǎn)分10分)已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,且第2項(xiàng)、第5項(xiàng)、第14項(xiàng)分別是一個(gè)等比數(shù)列的第二項(xiàng)、第三項(xiàng)、第四項(xiàng).

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

(Ⅱ)設(shè)n∈N*),b1b2+…+bn,是否存在最大的整數(shù)t,使得任意的n均有總成立?若存在,求出t;若不存在,請(qǐng)說(shuō)明理由

 

查看答案和解析>>

(本小題滿(mǎn)分10分)已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,且第2項(xiàng)、第5項(xiàng)、第14項(xiàng)分別是一個(gè)等比數(shù)列的第二項(xiàng)、第三項(xiàng)、第四項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)n∈N*),b1b2+…+bn,是否存在最大的整數(shù)t,使得任意的n均有總成立?若存在,求出t;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>


同步練習(xí)冊(cè)答案