題目列表(包括答案和解析)
如果以數(shù)列的任意連續(xù)三項(xiàng)作邊長,都能構(gòu)成一個三角形,那么稱這樣的數(shù)列為“三角形”數(shù)列;又對于“三角形”數(shù)列,如果函數(shù)y=f(x)使得由=f()()確定的數(shù)列仍成為一個“三角形”數(shù)列,就稱y=f(x) 是數(shù)列的“保三角形”函數(shù)。
(Ⅰ)、已知數(shù)列是首項(xiàng)為2012,公比為的等比數(shù)列,求證:是“三角形”數(shù)列;
(Ⅱ)、已知數(shù)列是首項(xiàng)為2,公差為1的等差數(shù)列,若函數(shù)f(x)= (m>0且m≠1)是的“保三角形”函數(shù). 求m的取值范圍.
已知,函數(shù)
(1)當(dāng)時,求函數(shù)在點(diǎn)(1,)的切線方程;
(2)求函數(shù)在[-1,1]的極值;
(3)若在上至少存在一個實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。
【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)時, 又 所以函數(shù)在點(diǎn)(1,)的切線方程為;(2)中令 有
對a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。
解:(Ⅰ)∵ ∴
∴ 當(dāng)時, 又
∴ 函數(shù)在點(diǎn)(1,)的切線方程為 --------4分
(Ⅱ)令 有
① 當(dāng)即時
(-1,0) |
0 |
(0,) |
(,1) |
||
+ |
0 |
- |
0 |
+ |
|
極大值 |
極小值 |
故的極大值是,極小值是
② 當(dāng)即時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。
綜上所述 時,極大值為,無極小值
時 極大值是,極小值是 ----------8分
(Ⅲ)設(shè),
對求導(dǎo),得
∵,
∴ 在區(qū)間上為增函數(shù),則
依題意,只需,即
解得 或(舍去)
則正實(shí)數(shù)的取值范圍是(,)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com