由三維空間向二維空間轉化.是研究立體幾何問題最重要的數(shù)學方法之一.在解決實際問題中.往往通過一定手段.將空間問題轉化成平面問題.得以解決. 例3. 如圖5.設正三棱錐S-ABC的底面邊長為a.側棱長為2a.過A作與側棱SB.SC都相交的截面AEF.求這個截面周長的最小值. 分析:沿側棱SA將三棱錐的側面展開如圖6.求周長最小值問題就轉化成了求A.A'兩點間的最短距離. 設.則由余弦定理得 所以 可求得 即所求截面周長的最小值為 說明:這類問題通常都是將幾何體的側面展開.空間問題轉化成平面問題來解決. 查看更多

 

題目列表(包括答案和解析)


同步練習冊答案