題目列表(包括答案和解析)
如圖所示,圓柱的高為2,底面半徑為,AE、DF是圓柱的兩條母線,過作圓柱的截面交下底面于.
(1)求證:;
(2)若四邊形ABCD是正方形,求證;
(3)在(2)的條件下,求二面角A-BC-E的平面角的一個三角函數(shù)值。
【解析】第一問中,利用由圓柱的性質(zhì)知:AD平行平面BCFE
又過作圓柱的截面交下底面于.∥
又AE、DF是圓柱的兩條母線
∥DF,且AE=DF 。粒摹危牛
第二問中,由線面垂直得到線線垂直。四邊形ABCD是正方形 又
BC、AE是平面ABE內(nèi)兩條相交直線
第三問中,設(shè)正方形ABCD的邊長為x,則在
在
由(2)可知:為二面角A-BC-E的平面角,所以
證明:(1)由圓柱的性質(zhì)知:AD平行平面BCFE
又過作圓柱的截面交下底面于.∥
又AE、DF是圓柱的兩條母線
∥DF,且AE=DF 。粒摹危牛
(2) 四邊形ABCD是正方形 又
BC、AE是平面ABE內(nèi)兩條相交直線
(3)設(shè)正方形ABCD的邊長為x,則在
在
由(2)可知:為二面角A-BC-E的平面角,所以
在邊長為的正方形ABCD中,E、F分別為BC、CD的中點,M、N分別為AB、CF的中點,現(xiàn)沿AE、AF、EF折疊,使B、C、D三點重合,構(gòu)成一個三棱錐.
(I)判別MN與平面AEF的位置關(guān)系,并給出證明;
(II)求多面體E-AFMN的體積.
【解析】第一問因翻折后B、C、D重合(如下圖),所以MN應(yīng)是的一條中位線,則利用線線平行得到線面平行。
第二問因為平面BEF,……………8分
且,
∴,又 ∴
(1)因翻折后B、C、D重合(如圖),
所以MN應(yīng)是的一條中位線,………………3分
則.………6分
(2)因為平面BEF,……………8分
且,
∴,………………………………………10分
又 ∴
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com