解:(I)設(shè)橢圓方程為 由已知. 由解得 為所求---------------3分 (II)設(shè)直線的方程為 解方程組 將并化簡.得-----4分 由于 化簡后.得 將化簡后.得------------9分 解得 ---------------------10分 由已知.傾斜角不等于 傾斜角的取值范圍是--------12分 查看更多

 

題目列表(包括答案和解析)

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(I)求橢圓的方程;

(II)若過點(2,0)的直線與橢圓相交于兩點,設(shè)為橢圓上一點,且滿足O為坐標原點),當 時,求實數(shù)的取值范圍.

【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運用。

第一問中,利用

第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的不等式,表示得到t的范圍。

解:(1)由題意知

 

查看答案和解析>>


同步練習冊答案