(九)點到直線.點到平面.直線與平面.平面與平面間的距離的定義及計算 例9 已知Rt△ABC中.∠A=90°.AB=a.AC=b.沿高AD折成直二面角判斷此時△ABC的形狀,(2)求D到平面ABC的距離. 解:(1)DH⊥平面ABC.因DA.DB.DC兩兩互相垂直.故H為△ABC的垂心.AE⊥BC.由cosθ=cosθ1cosθ2.得cos∠ABE=cos∠ABD ·cos∠DBC. ∵∠ABD和∠DBC分別為Rt△BDC的銳角.故0<cos∠ABD.cos∠DBC<1. ∴0<cos∠ABE<1.即∠ABC為銳角. 同理可證∠ABC.∠CAB均為銳角.∴△ABC為銳角三角形. (2)解法一:設(shè)D到平面ABC的距離為x.∵VD-ABC=VA-BDC得xSABC=AD·S△BDC. 解出 x=. 解法二:作AE⊥BC.AD⊥平面DBC.故DE⊥BC.BC⊥平面ADE.平面ADE⊥平面ABC.作DH⊥AE .則DH是D到平面ABC的距離(以點線距離代替點面距離).在Rt△ADE中.DH是斜邊AE上的高.解出 DH=. 查看更多

 

題目列表(包括答案和解析)

(2012•奉賢區(qū)一模)出租車幾何學(xué)是由十九世紀的赫爾曼-閔可夫斯基所創(chuàng)立的.在出租車幾何學(xué)中,點還是形如(x,y)的有序?qū)崝?shù)對,直線還是滿足ax+by+c=0的所有(x,y)組成的圖形,角度大小的定義也和原來一樣.直角坐標系內(nèi)任意兩點A(x1,y1),B(x2,y2)定義它們之間的一種“距離”:|AB|=|x1-x2|+|y1-y2|,請解決以下問題:
(1)求線段x+y=2(x≥0,y≥0)上一點M(x,y)的距離到原點O(0,0)的“距離”;
(2)定義:“圓”是所有到定點“距離”為定值的點組成的圖形,求“圓周”上的所有點到點Q(a,b)的“距離”均為 r的“圓”方程;
(3)點A(1,3)、B(6,9),寫出線段AB的垂直平分線的軌跡方程并畫出大致圖象.(說明所給圖形小正方形的單位是1)

查看答案和解析>>

(2012•奉賢區(qū)一模)出租車幾何學(xué)是由十九世紀的赫爾曼-閔可夫斯基所創(chuàng)立的.在出租車幾何學(xué)中,點還是形如(x,y)的有序?qū)崝?shù)對,直線還是滿足ax+by+c=0的所有(x,y)組成的圖形,角度大小的定義也和原來一樣.直角坐標系內(nèi)任意兩點A(x1,y1),B(x2,y2)定義它們之間的一種“距離”:|AB|=|x1-x2|+|y1-y2|,請解決以下問題:
(1)求點A(1,3)、B(6,9)的“距離”|AB|;
(2)求線段x+y=2(x≥0,y≥0)上一點M(x,y)的距離到原點O(0,0)的“距離”;
(3)定義:“圓”是所有到定點“距離”為定值的點組成的圖形,點A(1,3)、B(6,9),C(1,9),求經(jīng)過這三個點確定的一個“圓”的方程,并畫出大致圖象;(說明所給圖形小正方形的單位是1)

查看答案和解析>>

、出租車幾何學(xué)是由十九世紀的赫爾曼-閔可夫斯基所創(chuàng)立的。在出租車幾何學(xué)中,點還是形如的有序?qū)崝?shù)對,直線還是滿足的所有組成的圖形,角度大小的定義也和原來一樣。直角坐標系內(nèi)任意兩點定義它們之間的一種“距離”:,請解決以下問題:

1、(理)求線段上一點的距離到原點的“距離”;

(文)求點、的“距離”;

2、(理)定義:“圓”是所有到定點“距離”為定值的點組成的圖形,

求“圓周”上的所有點到點 的“距離”均為 的“圓”方程;

(文)求線段上一點的距離到原點的“距離”;

3、(理)點、,寫出線段的垂直平分線的軌跡方程并畫出大致圖像.

(文)定義:“圓”是所有到定點“距離”為定值的點組成的圖形,點、,,求經(jīng)過這三個點確定的一個“圓”的方程,并畫出大致圖像;

(說明所給圖形小正方形的單位是1)

 

 

 

 

查看答案和解析>>

出租車幾何學(xué)是由十九世紀的赫爾曼-閔可夫斯基所創(chuàng)立的.在出租車幾何學(xué)中,點還是形如(x,y)的有序?qū)崝?shù)對,直線還是滿足ax+by+c=0的所有(x,y)組成的圖形,角度大小的定義也和原來一樣.直角坐標系內(nèi)任意兩點A(x1,y1),B(x2,y2)定義它們之間的一種“距離”:|AB|=|x1-x2|+|y1-y2|,請解決以下問題:
(1)求線段x+y=2(x≥0,y≥0)上一點M(x,y)的距離到原點O(0,0)的“距離”;
(2)定義:“圓”是所有到定點“距離”為定值的點組成的圖形,求“圓周”上的所有點到點Q(a,b)的“距離”均為 r的“圓”方程;
(3)點A(1,3)、B(6,9),寫出線段AB的垂直平分線的軌跡方程并畫出大致圖象.(說明所給圖形小正方形的單位是1)

查看答案和解析>>

出租車幾何學(xué)是由十九世紀的赫爾曼-閔可夫斯基所創(chuàng)立的.在出租車幾何學(xué)中,點還是形如(x,y)的有序?qū)崝?shù)對,直線還是滿足ax+by+c=0的所有(x,y)組成的圖形,角度大小的定義也和原來一樣.直角坐標系內(nèi)任意兩點A(x1,y1),B(x2,y2)定義它們之間的一種“距離”:|AB|=|x1-x2|+|y1-y2|,請解決以下問題:
(1)求點A(1,3)、B(6,9)的“距離”|AB|;
(2)求線段x+y=2(x≥0,y≥0)上一點M(x,y)的距離到原點O(0,0)的“距離”;
(3)定義:“圓”是所有到定點“距離”為定值的點組成的圖形,點A(1,3)、B(6,9),C(1,9),求經(jīng)過這三個點確定的一個“圓”的方程,并畫出大致圖象;(說明所給圖形小正方形的單位是1)

查看答案和解析>>


同步練習(xí)冊答案