6.設橢圓的左.右焦點分別為.以為圓心.(為橢圓中心)為半徑作圓.若它與橢圓的一個交點為.且恰好為圓的一條切線.則橢圓的離心率為( ) A. B. C. D. 查看更多

 

題目列表(包括答案和解析)

設橢圓的左、右焦點分別為,上頂點為,離心率為,在軸負半軸上有一點,且

(Ⅰ)若過三點的圓恰好與直線相切,求橢圓C的方程;

(Ⅱ)在(Ⅰ)的條件下,過右焦點作斜率為的直線與橢圓C交于兩點,在軸上是否存在點,使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說明理由.

 

查看答案和解析>>

設橢圓的左、右焦點分別為,上頂點為,離心率為,在軸負半軸上有一點,且

(Ⅰ)若過三點的圓恰好與直線相切,求橢圓C的方程;

 (Ⅱ)在(Ⅰ)的條件下,過右焦點作斜率為的直線與橢圓C交于兩點,在軸上是否存在點,使得以為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍;否則,請說明理由.

 

查看答案和解析>>

設橢圓的左、右焦點分別為,上頂點為,在軸負半軸上有一點,滿足,且.

(Ⅰ)求橢圓的離心率;

(Ⅱ)D是過三點的圓上的點,D到直線的最大距離等于橢圓長軸的長,求橢圓的方程;

(Ⅲ)在(2)的條件下,過右焦點作斜率為的直線與橢圓交于兩點,在軸上是否存在點使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍,如果不存在,說明理由.

 

查看答案和解析>>

設橢圓的左、右焦點分別為 ,是橢圓上位于軸上方的動點 (Ⅰ)當取最小值時,求點的坐標;

(Ⅱ)在(Ⅰ)的情形下,是否存在以為直角頂點的內(nèi)接于橢圓的等腰直角三角形?若存在,求出共有幾個;若不存在,請說明理由.

 

查看答案和解析>>

設橢圓的左、右焦點分別為,,右頂點為A,上頂點為B.已知=.
(1)求橢圓的離心率;
(2)設P為橢圓上異于其頂點的一點,以線段PB為直徑的圓經(jīng)過點,經(jīng)過點的直線與該圓相切與點M,=.求橢圓的方程.

查看答案和解析>>


同步練習冊答案