過點(diǎn)P(1.4)作直線L.直線L與x,y的正半軸分別交于A,B兩點(diǎn).O為原點(diǎn), ① △ABO的面積為S.求S的最小值并求此時(shí)直線l的方程, ② ②當(dāng)|OA|+|OB|最小時(shí).求此時(shí)直線L的方程 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

 過點(diǎn)P(1,4)作直線L,直線L與x,y的正半軸分別交于A,B兩點(diǎn),O為原點(diǎn),

①△ABO的面積為S,求S的最小值并求此時(shí)直線l的方程;

②當(dāng)|OA|+|OB|最小時(shí),求此時(shí)直線L的方程

 

查看答案和解析>>

(本小題滿分12分)
過點(diǎn)P(1,4)作直線L,直線L與x,y的正半軸分別交于A,B兩點(diǎn),O為原點(diǎn),
①△ABO的面積為S,求S的最小值并求此時(shí)直線l的方程;
②當(dāng)|OA|+|OB|最小時(shí),求此時(shí)直線L的方程

查看答案和解析>>

(本小題滿分12分)在直角坐標(biāo)系xOy中,曲線C1的點(diǎn)均在C2:(x-5)2+y2=9外,且對C1上任意一點(diǎn)M,M到直線x=﹣2的距離等于該點(diǎn)與圓C2上點(diǎn)的距離的最小值.

(1)求曲線C1的方程;

(2)設(shè)P(x0,y0)(y0≠±3)為圓C2外一點(diǎn),過P作圓C2的兩條切線,分別與曲線C1相交于

點(diǎn)A,B和C,D.證明:當(dāng)P在直線x=﹣4上運(yùn)動時(shí),四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值.

 

查看答案和解析>>

(本小題滿分12分)

    已知定直線l:x=1和定點(diǎn)M(t,0)(t∈R),動點(diǎn)P到M的距離等于點(diǎn)P到直線l距離的2倍。

(1)求動點(diǎn)P的軌跡方程,并討論它表示什么曲線;

(2)當(dāng)t=4時(shí),設(shè)點(diǎn)P的軌跡為曲線C,過點(diǎn)M作傾斜角為θ(θ>0)的直線交曲線C于A、B兩點(diǎn),直線l與x軸交于點(diǎn)N。若點(diǎn)N恰好落在以線段AB為直徑的圓上,求θ的值。

 

查看答案和解析>>

(本小題滿分12分)如圖,拋物線的頂點(diǎn)O在坐標(biāo)原點(diǎn),焦點(diǎn)在y軸的負(fù)半軸上,過點(diǎn)M(0,-2)作直線l與拋物線相交于A,B兩點(diǎn),且滿足=(-4,-12).

 

(1)求直線l和拋物線的方程;

(2)當(dāng)拋物線上一動點(diǎn)P在點(diǎn)A和B之間運(yùn)動時(shí),求ΔABP面積的最大值.

 

查看答案和解析>>


同步練習(xí)冊答案