10. *已知.如果.那么 (A)在區(qū)間上是減函數(shù) (B)在區(qū)間上是減函數(shù) (C)在區(qū)間上是增函數(shù) (D)在區(qū)間上是增函數(shù) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)y=x+
t
x
有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)在(0,
t
]上是減函數(shù),在[
t
,+∞)上是增函數(shù).
(1)若f(x)=x+
a
x
,函數(shù)在(0,a]上的最小值為4,求a的值;
(2)對于(1)中的函數(shù)在區(qū)間A上的值域是[4,5],求區(qū)間長度最大的A(注:區(qū)間長度=區(qū)間的右端點-區(qū)間的左斷點);
(3)若(1)中函數(shù)的定義域是[2,+∞)解不等式f(a2-a)≥f(2a+4).

查看答案和解析>>

已知函數(shù)f(x)的定義域為[-1,5],部分對應(yīng)值如下表.f(x)的導(dǎo)函數(shù)y=f'(x)的圖象如圖所示.
x -1 0 2 4 5
f(x) 1 2 0 2 1
下列關(guān)于函數(shù)f(x)的命題:
①函數(shù)f(x)在[0,1]上是減函數(shù);
②如果當(dāng)x∈[-1,t]時,f(x)最大值是2,那么t的最大值為4;
③函數(shù)y=f(x)-a有4個零點,則1≤a<2;
④已知(a,b)是y=
2012
f(x)
的一個單調(diào)遞減區(qū)間,則b-a的最大值為2.
其中真命題的個數(shù)是( 。

查看答案和解析>>

已知函數(shù)y=x+有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,]上是減函數(shù),在[,+∞)上是增函數(shù).

(1)如果函數(shù)y=x+(x>0)的值域為[6,+∞),求b的值;

(2)研究函數(shù)y=x2+(常數(shù)c>0)在定義域內(nèi)的單調(diào)性,并說明理由;

(3)對函數(shù)y=x+和y=x2+(常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例,研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)f(x)=(x2+)n+(+x)n(n是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你的研究結(jié)論).

查看答案和解析>>

已知上的偶函數(shù),且,如果上是減

函數(shù),那么 在區(qū)間上分別是                               (    )

A.增函數(shù)和減函數(shù)  B.增函數(shù)和增函數(shù) C.減函數(shù)和減函數(shù)    D.減函數(shù)和增函數(shù)

 

查看答案和解析>>

已知函數(shù)y=x+數(shù)學(xué)公式(x>0)有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,數(shù)學(xué)公式]上是減函數(shù),在[數(shù)學(xué)公式,+∞)上是增函數(shù).
(1)如果函數(shù)y=x+數(shù)學(xué)公式(x>0)的值域為[6,+∞),求b的值;
(2)研究函數(shù)y=x2+數(shù)學(xué)公式(x>0,常數(shù)c>0)在定義域內(nèi)的單調(diào)性,并用定義證明(若有多個單調(diào)區(qū)間,請選擇一個證明);
(3)對函數(shù)y=x+數(shù)學(xué)公式和y=x2+數(shù)學(xué)公式(x>0,常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)F(x)=數(shù)學(xué)公式+數(shù)學(xué)公式在區(qū)間[數(shù)學(xué)公式,2]上的最大值和最小值(可利用你的研究結(jié)論).

查看答案和解析>>


同步練習(xí)冊答案