5. 曲線 與公共點的個數(shù). 查看更多

 

題目列表(包括答案和解析)

(1)已知函數(shù)f(x)=|x-2|+|x-4|的最小值為m,實數(shù)a,b,c,n,p,q
滿足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值;     (Ⅱ)求證:
(2)已知在直角坐標系xOy中,曲線C的參數(shù)方程為(t為非零常數(shù),θ為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,直線l的方程為
(Ⅰ)求曲線C的普通方程并說明曲線的形狀;
(Ⅱ)是否存在實數(shù)t,使得直線l與曲線C有兩個不同的公共點A、B,且(其中O為坐標原點)?若存在,請求出;否則,請說明理由.

查看答案和解析>>

選修4-4:坐標系與參數(shù)方程
極坐標系的極點為直角坐標系xOy的原點,極軸為z軸的正半軸,兩種坐標系的長度單位相同,己知圓C1的極坐標方程為p=4(cosθ+sinθ,P是C1上一動點,點Q在射線OP上且滿足OQ=OP,點Q的軌跡為C2
(I)求曲線C2的極坐標方程,并化為直角坐標方程;
( II)已知直線l的參數(shù)方程為(t為參數(shù),0≤φ<π),l與曲線C2有且只有一個公共點,求φ的值.

查看答案和解析>>

(2012•唐山二模)選修4-4:坐標系與參數(shù)方程
極坐標系的極點為直角坐標系xOy的原點,極軸為z軸的正半軸,兩種坐標系的長度單位相同,己知圓C1的極坐標方程為p=4(cosθ+sinθ,P是C1上一動點,點Q在射線OP上且滿足OQ=
1
2
OP,點Q的軌跡為C2
(I)求曲線C2的極坐標方程,并化為直角坐標方程;
( II)已知直線l的參數(shù)方程為
x=2+tcosφ
y=tsinφ
(t為參數(shù),0≤φ<π),l與曲線C2有且只有一個公共點,求φ的值.

查看答案和解析>>

(1)已知函數(shù)f(x)=|x-2|+|x-4|的最小值為m,實數(shù)a,b,c,n,p,q
滿足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值;     (Ⅱ)求證:
n4
a2
+
p4
b2
+
q4
c2
≥2

(2)已知在直角坐標系xOy中,曲線C的參數(shù)方程為
x=2tcosθ
y=2sinθ
(t為非零常數(shù),θ為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,直線l的方程為ρsin(θ-
π
4
)=2
2

(Ⅰ)求曲線C的普通方程并說明曲線的形狀;
(Ⅱ)是否存在實數(shù)t,使得直線l與曲線C有兩個不同的公共點A、B,且
OA
OB
=10
(其中O為坐標原點)?若存在,請求出;否則,請說明理由.

查看答案和解析>>

(1)已知函數(shù)f(x)=|x-2|+|x-4|的最小值為m,實數(shù)a,b,c,n,p,q
滿足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值;     (Ⅱ)求證:
n4
a2
+
p4
b2
+
q4
c2
≥2

(2)已知在直角坐標系xOy中,曲線C的參數(shù)方程為
x=2tcosθ
y=2sinθ
(t為非零常數(shù),θ為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,直線l的方程為ρsin(θ-
π
4
)=2
2

(Ⅰ)求曲線C的普通方程并說明曲線的形狀;
(Ⅱ)是否存在實數(shù)t,使得直線l與曲線C有兩個不同的公共點A、B,且
OA
OB
=10
(其中O為坐標原點)?若存在,請求出;否則,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案