在△中.邊長(zhǎng)為..邊上的中線長(zhǎng)之和等于.若以邊中點(diǎn)為原點(diǎn).邊所在直線為軸建立直角坐標(biāo)系.則△的重心的軌跡方程為: . 查看更多

 

題目列表(包括答案和解析)

在△中,邊長(zhǎng)為,、邊上的中線長(zhǎng)之和等于.若以邊中點(diǎn)為原點(diǎn),邊所在直線為軸建立直角坐標(biāo)系,則△的重心的軌跡方程為:                   

查看答案和解析>>

在△中,邊長(zhǎng)為邊上的中線長(zhǎng)之和等于.若以邊中點(diǎn)為原點(diǎn),邊所在直線為軸建立直角坐標(biāo)系,則△的重心的軌跡方程為:                   

 

查看答案和解析>>

在△中,邊長(zhǎng)為,、邊上的中線長(zhǎng)之和等于.若以邊中點(diǎn)為原點(diǎn),邊所在直線為軸建立直角坐標(biāo)系,則△的重心的軌跡方程為:                   

查看答案和解析>>

在Rt△ABC中,a、b為直角邊,c為斜邊,則c的外接圓半徑R=
 
,內(nèi)切圓半徑r=
 
,斜邊上的高為hc=
 
,斜邊被垂足分成兩線段之長(zhǎng)為
 

查看答案和解析>>

如圖,在邊長(zhǎng)為12的正方形A1 AAA1′中,點(diǎn)B、C在線段AA′上,且AB = 3,BC = 4,作BB1AA1,分別交A1A1′、AA1′于點(diǎn)B1P;作CC1AA1,分別交A1A1′、AA1′于點(diǎn)C1、Q;將該正方形沿BB1、CC1折疊,使得AA1′ 與AA1重合,構(gòu)成如圖所示的三棱柱ABCA1B1C1,在三棱柱ABCA1B1C1中, (Ⅰ)求證:AB⊥平面BCC1B1;  (Ⅱ)求面PQA與面ABC所成的銳二面角的大。á螅┣竺APQ將三棱柱ABCA1B1C1分成上、下兩部分幾何體的體積之比.

 


查看答案和解析>>


同步練習(xí)冊(cè)答案