根據(jù)下列的列聯(lián)表求K2= . y1 y2 合計 x1 1 4 5 x2 2 3 5 合計 3 7 10 查看更多

 

題目列表(包括答案和解析)

通過隨機詢問某校100名高中學生在購買食物時是否看營養(yǎng)說明,得到如下的列聯(lián)表:
(1)從這50名女生中按是否看營養(yǎng)說明采取分層抽樣,抽取一個容量為5的樣本,問樣本中看與不看營養(yǎng)說明的女生各有多少名?
(2)從(1)中的5名女生樣本中隨機選取兩名作深度訪談,求選到看與不看營養(yǎng)說明的女生各一名的概率;
(3)根據(jù)以下列聯(lián)表,問有多大把握認為“性別與在購買食物時看營養(yǎng)說明”有關?
性別與看營養(yǎng)說明列聯(lián)表  單位:名
總計
看營養(yǎng)說明403070
不看營養(yǎng)說明102030
總計5050100
統(tǒng)計量,其中n=a+b+c+d.
概率表
P(K2≥k0.150.100.050.0250.010
K2.0722.7063.8415.0246.635

查看答案和解析>>

某學校為調查高三年學生的身高情況,按隨機抽樣的方法抽取80名學生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在170~175cm的男生人數(shù)有16人.

(Ⅰ)試問在抽取的學生中,男、女生各有多少人?
(Ⅱ)根據(jù)頻率分布直方圖,完成下列的2×2列聯(lián)表,并判斷能有多大(百分兒)的把握認為“身高與性別有關”?
附:
P(x2≥k) 0.05 0.01
k 3.841 6.635
  ≥170cm <170cm 總計
男生身高      
女生身高      
總計      
x2=
n(n11n22-n12n21)2
n1+n2+n1+n2

(Ⅲ)在上述80名學生中,從身高在170~175cm之間的學生中按男、女性別分層抽樣的方法,抽出5人,從這5人中選派3人當旗手,求3人中恰好有一名女生的概率.

查看答案和解析>>

某校高二年級共有學生1000名,其中走讀生750名,住宿生250名,現(xiàn)從該年級采用分層抽樣的方法從該年級抽取n名學生進行問卷調查.根據(jù)問卷取得了這n名同學每天晚上有效學習時間(單位:分鐘)的數(shù)據(jù),按照以下區(qū)間分為八組:
①[0,30),②[30,60),③[60,90),④[90,120),
⑤[120,150),⑥[150,180),⑦[180,210),⑧[210,240),
得到頻率分布直方圖如下.已知抽取的學生中每天晚上有效學習時間少于60分鐘的人數(shù)為5人;
(1)求n的值并補全下列頻率分布直方圖;
(2)如果把“學生晚上有效時間達到兩小時”作為是否充分利用時間的標準,對抽取的n名學生,完成下列2×2列聯(lián)表:
利用時間充分利用時間不充分總計
走讀生502575
住宿生101525
總計6040100
是否有95%的把握認為學生利用時間是否充分與走讀、住宿有關?
參考公式:
參考列表:
P(K2≥k0.500.400.250.150.100.050.025
k0.4550.7081.3232.0722.7063.8415.024
(3)若在第①組、第②組、第⑦組、第⑧組中共抽出3人調查影響有效利用時間的原因,記抽到“有效學習時間少于60分鐘”的學生人數(shù)為X,求X的分布列及期望.

查看答案和解析>>

有甲乙兩個班進行數(shù)學考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下列聯(lián)表.
優(yōu)秀非優(yōu)秀總計
甲班10
乙班30
合計105
已知在全部105人中隨機抽取1人為優(yōu)秀的概率為
(1)請完成上面的聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認為“成績與班級有關系”;
(3)若按下面的方法從甲班優(yōu)秀的學生抽取一人:把甲班10優(yōu)秀的學生按2到11進行編號,先后兩次拋擲一枚骰子,出現(xiàn)的點數(shù)之和為被抽取的序號.試求抽到6號或10號的概率.
參考公式:K2=,其中n=a+b+c+d.
概率表
P(K2≥k0.150.100.050.0250.010
k2.0722.7063.8415.0246.635

查看答案和解析>>

某校高二年級共有學生1000名,其中走讀生750名,住宿生250名,現(xiàn)從該年級采用分層抽樣的方法從該年級抽取n名學生進行問卷調查,根據(jù)問卷取得了這n名同學每天晚上有效學習時間(單位:分鐘)的數(shù)據(jù),按照以下區(qū)間分為八組:[0,30),[30,60),[60,90),[90,120),[120,150),[150,180),[180,210),[210.240),得到頻率分布直方圖如圖,已知抽取的學生中每天晚上有效學習時間少于60分鐘的人數(shù)為5人.
(1)求n的值并求有效學習時間在[90,120)內的頻率;
(2)如果把“學生晚上有效時間達到兩小時”作為是否充分利用時間的標準,對抽取的n名學生,下列2×2列聯(lián)表,問:是否有95%的把握認為學生利用時間是否充分與走讀、住宿有關?
利用時間充分利用時間不充分合計
走讀生50a______
住校生b15______
合計______40n
(3)若在第①組、第②組、第⑦組、第⑧組中共抽出3人調查影響有效利用時間的原因,記抽到“有效學習時間少于60分鐘”的學生人數(shù)為X,求X的分布列及期望.
參考公式:
參考列表:

P(K2≥k
0.500.400.250.150.100.050.025

k
0.4550.7081.3232.0722.7063.8415.024


查看答案和解析>>


同步練習冊答案