2006-2007學(xué)年度北京市北師大附屬實驗中學(xué)第一學(xué)期期中試卷

一、選擇題(本題共40分,每小題4分,在下列各題中的的四個選項中只有一個是正確的):

1.方程(m-1)x2+mx+l=0是關(guān)于x的一元二次方程,則m的值是(  )

  (A)任意實數(shù)    (B)  m≠0  (C)  m≠l    (D)  m≠-1

試題詳情

2.若x2-6x+k2是一個完全平方式,則k的值是(  )

  (A)  3    (B)  -3    (C)±3    (D)以上都不對

試題詳情

3.下列一元二次方程中,兩實根和為5的是(  )

   (A)x2-5x+8=0      (B)  x2+5x-8=0 

(C)x2+5x+8=0      (D)  x2-5x-8=0

試題詳情

4.如圖,在同一直角坐標(biāo)系中表示y=ax2和y=ax+b(ab>O)的圖象是(  )

試題詳情

試題詳情

5.四張完全相同的卡片上,分別畫有圓、矩形、等邊三角形、等腰梯形,現(xiàn)在從中隨機抽取一張,卡片上畫的恰好是中心對稱圖形的概率為(  )

試題詳情

(A)               (B)                 (C)                  (D) 

試題詳情

6.仔細(xì)讀一讀以下四個命題:(1)等弦對等。(2)等弧對等弦;(3)平分一條弧和它所對的弦的直線必過圓心;(4)平分弦的直徑垂直于這條弦.其中正確的命題有(  )   

  (A)  1個    (B) 2個    (C)  3個    (D)4個

試題詳情

7.0是△ABC的內(nèi)心,∠A=800,則∠BOC的度數(shù)是(   )

  (A)1600      (B)1300     (C)1000      (D)400

試題詳情

8.一個圓錐形冰淇淋紙筒(無蓋),其底面直徑為6cm,母線長為5cm,做成一個這樣的紙筒所需紙片的面積是(   )

試題詳情

  (A) 66cm2      (B) 28cm2      (C) 30cm2     (D) 15cm2

試題詳情

9.⊙和⊙的半徑分別為l和3,⊙和⊙外切,則半徑為4且與⊙和⊙和都相切的圓有(  )

  (A)  2個         (B)  3個       (C)  4個        (D)  5個

試題詳情

 

試題詳情

10.如上圖,畫有臉譜的圓與⊙0的半徑相等,并繞⊙0按逆時針方向做無滑動的滾動(⊙0固定),則其中四個位置完全正確的是(   )

試題詳情

試題詳情

二、填空題(本題共24分,每小題4分):

11.如果是方程x2-cx+l=0的一個根,那么c的值是               .

試題詳情

12.己知拋物線y=3x2+4(a+1)x+3的頂點在x軸上,那么a的值是                    

試題詳情

13.在一個不透明的布袋中,紅色、黑色、白色的玻璃球共有40個,除顏色外其它完全相同,小李通過多次摸球試驗后發(fā)現(xiàn)其中摸到紅色、黑色球的頻率分別為O.1 5和0.45,則口袋中白色球的數(shù)目很可能是            .

試題詳情

14.如圖,將△ABC繞著點C按順時針方向旋轉(zhuǎn)250,B點落在位置,A點落在位置,若,則∠BAC的度數(shù)是                .

試題詳情

 

試題詳情

15.如圖,小明同學(xué)測量一個光盤的直徑,他只有一把直尺和一塊三角板,他將直尺、光盤和三角板如圖放置于桌面上,并量出AB=3.5cm,則此光盤的直徑是            cm.

試題詳情

16.如圖,某大學(xué)的校門是拋物線形水泥建筑物,大門的地面寬為8m,兩側(cè)距地面4m高處各有一個掛校名橫匾用的鐵環(huán),兩鐵環(huán)的水平距離為6m,則校門的高為          m(精確到0.1m,水泥建筑物厚度忽略不計).

試題詳情

     

試題詳情

三、解答題(本題共47分):

17. (本小題6分).解方程:2x2-2x-1=O

試題詳情

18. (本小題6分).已知關(guān)于x的方程kx2-4kx+k-5=0有兩個相等的實數(shù)根,求k的值并解這個方程.

試題詳情

19. (本小題6分).在平面直角坐標(biāo)系xOy中,直線y=-x繞點O順時針旋轉(zhuǎn)900得到直線l,直線l與二次函數(shù)y=x2+bx+2圖象的一個交點為(m,3),試求二次函數(shù)的解析式.

試題詳情

20. (本小題6分).小明、小亮和小強三人準(zhǔn)備下象棋,他們約定用 “拋硬幣”的游戲方式來確定哪兩個人先下棋,規(guī)則如下圖:

試題詳情

  (1)請你畫出表示游戲一個回合所有可能出現(xiàn)的結(jié)果的樹狀圖:

(2)求一個回合能確定兩人先下棋的概率.

試題詳情

21. (本小題7分).機械加工需用油進行潤滑以減小摩擦,某企業(yè)加工一臺大型機械設(shè)備潤滑用油量為90千克,用油的重復(fù)利用率為60%,按此計算,加工一臺大型機械設(shè)備的實際耗油量為36千克.為了建設(shè)節(jié)約型社會,減少油耗,該企業(yè)的甲乙兩個車間都組織了人員為減少實際油耗量進行攻關(guān).

(1)甲車間通過技術(shù)革新后,加工一臺大型機械設(shè)備潤滑用油量下降到70千克,用油的重復(fù)利用率仍為60%,問甲車間技術(shù)革新后,加工一臺大型機械設(shè)備的實際耗油量是多少千克?

試題詳情

(2)乙車間通過技術(shù)革新后,不僅降低了潤滑用油量,同時也提高了重復(fù)利用率,并且發(fā)現(xiàn)在技術(shù)革新前的基礎(chǔ)上,潤滑用油量每減少1千克,用油的重復(fù)利用率將增加1.6%,這樣乙車間加工一臺大型機械設(shè)備的實際耗油量下降到12千克。問乙車間技術(shù)革新后,加工一臺大型機械設(shè)備的潤滑用油量是多少千克?用油的重復(fù)利用率是多少?

試題詳情

解方程:

解:(1)當(dāng)x≥O時,原方程化為x2-x-2=0,解得:x1=2,x2=-1(不合題意,舍去).

    (2)當(dāng)x<O時,原方程化為x2+x-2=0,解得:x1=1(不合題意,舍去),x2=-2

試題詳情

∴原方程的根是x1=2,x2=-2.

試題詳情

請參照例題解方程,則此方程的根是         

試題詳情

23.(本小題6分)如圖.正方形ABCD中,E、F分別在邊BC、CD上,∠EAF=450,BE=2,CF=3.

求:正方形的邊長.

試題詳情

試題詳情

24.(本小題6分).己知:如圖,⊙D交y軸于A、B,交x軸于C,過點C的直線與y軸交于P,D點坐標(biāo)(0,1)

求證:PC是⊙D的切線.

試題詳情

試題詳情

四、解答題(本題9分):

25.矩形ABCD的邊長AB=3,AD=2,將此矩形放在平面直角坐標(biāo)系中,使AB在x軸的正半軸上,點A在點B的左側(cè),另兩個頂點都在第一象限,且直線經(jīng)過這兩個頂點中的一個.  

(1)求A、B、C、D四點坐標(biāo).  

試題詳情

(2)以AB為直徑作⊙M,記過A、B兩點的拋物線的頂點為P.

     ①若P點在⊙M和矩形內(nèi),求a的取值范圍.

試題詳情

     ②過點C作CF切⊙M于E,交AD于F,當(dāng)PFAB時,求拋物線的函數(shù)解析式.

試題詳情

五、選做題(本題共6分,每小題3分):

試題詳情

26.如圖,在⊙O中,弦AB⊥AC,AB=a,AC=b,弦AD平分∠BAC.求AD的長(用a、b表示).

試題詳情

試題詳情

27.如圖,在平面直角坐標(biāo)系中,以點P(1,-1)為圓心,2為半徑作圓,交x軸A、B兩點,拋物線

y=ax2+bx+c(a>O)過點A、B,且頂點C在⊙P上.

(1)求拋物線的解析式;

(2)在拋物線上是否存在一點D,使線段OC與PD互相平分?若存在,求出點D的坐標(biāo);若不存在,請說明理由.

試題詳情

試題詳情


同步練習(xí)冊答案