海 淀 區(qū) 高 三 年 級 第 二 學(xué) 期 期 末 練 習(xí)

數(shù)  學(xué)(文科)             2008.5

本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,第Ⅰ卷1至2頁,第Ⅱ卷3至9頁,共150分?荚嚂r間120分鐘。考試結(jié)束,將本試卷和答題卡一并交回。

 

卷(選擇題  共40分)

注意事項:

1. 答卷前將學(xué)校、班級、姓名填寫清楚。

2. 選擇題的每小題選出答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑。其他小題用鋼筆或圓珠筆將答案直接寫在試卷上。

 

一、選擇題:本大題共8小題,每小題5分,共40分.在每小題列出的四個選項中,選出符合題目要求的一項.

(1)sin()cos()=                                                                                    ( 。
(A)sin2            (B)sin2     (C)sin2    (D)cos2

試題詳情

(2)定義映射fAB,若集合A中元素x在對應(yīng)法則f作用下的象為log3 x,則A中元素9的象是                                                   ( 。
(A)2                     (B)2                 (C)3       (D)3

試題詳情

(3)若a為實數(shù),則圓(x-a2+(y+2a2=1的圓心所在的直線方程為                ( 。
(A)2x+y=0               (B)x+2y=0               (C)x2y=0   (D)2xy=0

(4)1+2+22+…+29的值為                                                                                     ( 。

(A)512                    (B)511                     (C)1024            (D)1023

試題詳情

(5)函數(shù)f(x)= g(x)=()x-1在同一直角坐標(biāo)系中的圖象是                          (    )

試題詳情

試題詳情

(6)設(shè)m,n,l是三條不同的直線,,是三個不同的平面,則下列命題中的真命題是(    )

(A)若m,nl所成的角相等,則mn

試題詳情

(B)若,m,則m

試題詳情

(C)若m,n所成的角相等,則mn

試題詳情

(D)若與平面,所成的角相等,則

試題詳情

(7)設(shè)雙曲線C: y2=1的右焦點為F,直線l過點F.若直線l與雙曲線C的左、右兩支都相交,則直線l 的斜率k的取值范圍是                                                               (    ) 

試題詳情

 (A)kk (B)kk  (C)k  (D)k

(8)設(shè)函數(shù)f(x)=x|x|+bx+c,給出下列四個命題:                              (    )

         ①當(dāng)c=0時,y=f(x)是奇函數(shù);

         ②當(dāng)b=0時,c>0時,方程f(x)=0只有一個實根;

         ③函數(shù)y=f(x)的圖象關(guān)于點(0,c)對稱;

         ④方程f(x)=0至多有兩個實根,

         其中正確命題的個數(shù)為

         (A)1個                            (B)2個                                (C)3個                        (D)4個

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

海 淀 區(qū) 高 三 年 級 第 二 學(xué) 期 期 末 練 習(xí)

試題詳情

數(shù)  學(xué)(文科)             2008.5

卷(共110分)

注意事項:

試題詳情

1. 用鋼筆或圓珠筆將答案直接寫在試卷上。

試題詳情

2. 答卷前將密封線內(nèi)的項目填寫清楚。

題號

總分

(15)

(16)

(17)

(18)

(19)

(20)

分數(shù)

 

 

 

 

 

 

 

 

 

 

試題詳情

二、填空題:本大題共6小題,每小題5分,共30分.請把答案填在題中橫線上.

(9)已知向量a=(1, 2),b=(4,2),那么ab夾角的大小是                  .

試題詳情

(10)已知點A分有向線段所成的比為2,且M(1,3),N(,1),那么A點的坐標(biāo)為                .

試題詳情

(11)已知橢圓=1(a>0)的一條準線方程是x=4,那么此橢圓的離心率是               .

(12)設(shè)地球的半徑為R,則地球北緯60°的緯線圈的周長等于             .

試題詳情

(13)若圓x2+y22x=0關(guān)于直線y=x對稱的圓為C,則圓C的圓心坐標(biāo)為             ;再把圓C沿向量a=(1,2)平移得到圓D,則圓D的方程為                       .

試題詳情

(14)定義運算:=adbc,若數(shù)列{an}滿足=1,且=2(nN*),則a3=                ,數(shù)列{an}的通項公式為an=               .

 

(15)(本小題共12分)

試題詳情

三、解答題:本大題共6小題,共80分.解答應(yīng)寫出文字說明、演算步驟或證明過程.

            設(shè)函數(shù)f(x)=p?q,其中向量p=(sinx,cosx+sinx),q=(2cosx,cosxsinx), xR.

試題詳情

(Ⅰ)求f()的值及函數(shù)f(x)的最大值;

(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(16)(本小題共14分)

試題詳情

在三棱椎SABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=4,SB=4.

試題詳情

(Ⅰ)證明:SC⊥BC;

試題詳情

(Ⅱ)求二面角ABCS的大。

(Ⅲ)求直線AB與平面SBC所成角的大小.

(用反三角函數(shù)表示)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(17)(本小題共13分)

試題詳情

甲、乙、丙三人組成一組,參加一個闖關(guān)游戲團體賽.三人各自獨立闖關(guān),其中甲闖關(guān)成功的概率為,甲、乙都闖關(guān)成功的概率為,乙、丙都闖關(guān)成功的概率為.每人闖關(guān)成功記2分,三人得分之和記為小組團體總分.

(Ⅰ)求乙、丙各自闖關(guān)成功的概率;

(Ⅱ)求團體總分為4分的概率;

(Ⅲ)若團體總分不小于4分,則小組可參加復(fù)賽.求該小組參加復(fù)賽的概率.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(18)(本小題共13分)

將數(shù)列{an}的各項排成如圖所示的三角形形狀.

(Ⅰ)若數(shù)列{an}是首項為1,公差為2的等差數(shù)列,寫出圖中第5行第5個數(shù);

(Ⅱ)若函數(shù)f(x)=a1x+a2x2+a3x3+…+anxn,且f(1)=n2,求數(shù)列{an}的通項公式;

(Ⅲ)設(shè)Tm為第m行所有項的和,在(Ⅱ)的條件下,用含m的代數(shù)式表示Tm.

 

試題詳情

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(19)(本小題共14分)

試題詳情

         已知O為坐標(biāo)原點,點F的坐標(biāo)為(1,0),點P是直線m:x=1上一動點,點MPF的中點,點Q滿足QMPF,且QPm.

試題詳情

(Ⅰ)求點Q的軌跡方程;

試題詳情

(Ⅱ)設(shè)過點(2,0)的直線l與點Q的軌跡交于A、B兩點,且∠AFB=.試問能否等于?若能,求出相應(yīng)的直線l的方程;若不能,請說明理由.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(20)(本小題共14分)

試題詳情

已知函數(shù)f(x)=x3+ax24(aR).

試題詳情

(Ⅰ)若函數(shù)y=f(x)的圖象在點P(1,f(1))處的切線的傾斜角為,求a;

試題詳情

(Ⅱ)設(shè)f(x)的導(dǎo)函數(shù)是f′(x).在(Ⅰ)的條件下,若m,n[1,1],

f(m)+f′(n)的最小值;

試題詳情

(Ⅲ)若存在x0(0,+∞),使f(x0) >0,求a的取值范圍.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

海 淀 區(qū) 高 三 年 級 第 二 學(xué) 期 期 末 練 習(xí)

數(shù)  學(xué)(文科)

試題詳情

 

一、選擇題:(本大題共8小題,每小題5分,共40分.)

題號

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

答案

A

B

A

D

D

B

C

C

二、填空題(本大題共6小題,每小題5分,有兩空的小題,第一空3分,第二空2分,共30分)

(9)    (10)(2,-1)   (11),或   (12)    (13)(0,1),(x-1)2+(y-3)2=1

(14)10,4n-2

三、解答題(本大題共6小題,共80分.)

(15)(共12分)
解:()∵p = (sinx,cosx+sinx),q=(2cosx,cosx-sinx),
          ∴f(x) = p?q=(sinx,cosx+sinx)?(2cosx,cosx-sinx)

                     =2sinxcosx+cos2x-sin2x………………………………………………2分

               =sin2x+cos2x……………………………………………………………4分

∴f() =…………………………………………………………………5分

又f(x) = sin2x+cos2x = ………………………………………6分

∴函數(shù)f(x)的最大值為. ……………………………………………………7分

當(dāng)且僅當(dāng)x=+k(kZ)時,函數(shù)f(x)取得最大值.
)由2≤2x+≤2+  (kZ) …………………………………9分

≤x≤+(kZ), …………………………………………11分

∴函數(shù)f(x)的單調(diào)遞增區(qū)間為[,+]  (k∈Z). …………12分

(16)(共14分)

解法一:

解:(Ⅰ)∵SA⊥AB,SA⊥AC,且AB∩AC=A. ∴SA⊥平面ABC.…………………………2分

   ∴AC為SC在平面ABC內(nèi)的射影.  ……………………………………………3分

又AC⊥BC,∴BC⊥SC……………………………………………………………………4分

(Ⅱ)由(Ⅰ)BC⊥SC,又BC⊥AC,

∴∠SCA為所求二面角的平面角…………………………………………………………6分

又∵SB=4,BC=4,

∴SC=4.    ∵AC=2,∴∠SCA=60°…………………………………………………9分

即二面角A-BC-S的大小為60°

(Ⅲ)過A作AD⊥SC于D,連結(jié)BD,

由(Ⅱ)得BC⊥平面SAC,

又BC平面SBC,

∴平面SAC⊥平面SBC,

且平面SAC平面SBC=SC.

∴AD⊥平面SBC.

∴BD為AB在平面SBC內(nèi)的射影.

∴∠ABD為AB與平面SBC所成角.…………………………11分

在Rt△ABC中,AB=

在Rt△SAC中,SA==2,

AD=.

∴sinABD=.……………………………………………………………………13分

所以直線AB與平面SBC所成角的大小為arcsin.…………………………………14分

解法二:

解:(Ⅰ)由已知∠SAB=∠SAC=∠ACB=90°,

以C點為原點,建立如圖所示的空間直角坐標(biāo)系C - xyz.

則A(0,2,0),B(4,0,0),C(0,0,0),S(0,2,).……………………………2分

=(0,- 2,),

*=(-4,0,0).
      ∴?=0.

∴SC⊥BC.…………………………………………………………4分(Ⅱ)∵∠SAB=∠SAC=90°,

∴SA⊥平面ABC.

=(0,0,)是平面ABC的法

向量.…………………………………………………………………5分

設(shè)側(cè)面SBC的法向量為

n=(x,y,z),

*=(0,- 2,-),=(-4,0,0).
      ∵?n=0,?n=0,

∴x=0.令z=1則y=,

則平面SBC的一個法向量n=(0,,1).……………………………………………7分

cos,n=       =.……………………………………………………8分

即二面角A-BC-S的大小為60°.……………………………………………………9分

(Ⅲ)由(Ⅱ)可知n=(0,-,1)是平面SBC的一個法向量.……………………………10分

=(4,-2,0),

∴cos,n=         =.…………………………………………13分

所以直線AB與平面SBC所成角為arcsin.…………………………………………14分

(17)(共13分)

解:(Ⅰ)設(shè)乙闖關(guān)成功的概率為P1,丙闖關(guān)成功的概率為P2………………………1分

         因為乙丙獨立闖關(guān),根據(jù)獨立事件同時發(fā)生的概率公式得:

………………………………………………………………………3分

解得P1=,P2=.…………………………………………………………5分

答:乙闖關(guān)成功的概率為,丙闖關(guān)成功的概率為.

(Ⅱ)團體總分為4分,即甲、乙、丙三人中恰有2人過關(guān),而另外一個沒過關(guān).

設(shè)“團體總分為4分”為事件A,………………………………………………6分

則P(A)=(1-.

………………………………………………………………………………………9分

答:團體總分為4分的概率為.

(Ⅲ)團體總分不小于4分,即團體總分為4分或6分,

設(shè)“團體總分不小于4分”為事件B,…………………………………………10分

由(Ⅱ)知團體總分為4分的概率為.

團體總分為6分,即3人都闖關(guān)成功的概率為 ………………12分

所以參加復(fù)賽的概率為P(B)=.…………………………………13分

答:該小組參加復(fù)賽的概率為.

(18)(共13分)

解:(Ⅰ)第5行第5個數(shù)是29.……………………………………………………………2分

 (Ⅱ)由f(1)=n2,得a1+a2+a3+…+an=n2.…………………………………………………3分

設(shè)Sn是數(shù)列{an}的前n項和,∴Sn=n2.……

當(dāng)n=1時,a1=S1=1,…………………………………………………………………5分

當(dāng)n≥2時,an=Sn-Sn-1=n2-(n-1)2=2n-1.………………………………………6分

又當(dāng)n=1時,2n-1=1=a1,

∴an=2n-1. ………………………………………………………………………8分

即數(shù)列{an}的通項公式是an=2n-1(n=1,2,3,…).

(Ⅲ)由(Ⅱ)知數(shù)列{an}是首項為1,公差為2的等差數(shù)列.……………………………9分

∵前m-1行共有項1+2+3+…+(m-1)= ,

∴第m行的第一項為=2×-1=m2-m+1.………………11分

∴第m行構(gòu)成首項為m2-m+1,公差為2的等差數(shù)列,且有m項.

Tm=m2m+1)×m+×2=m3.……………………………………13分

(19)(共14分)

解:(Ⅰ)設(shè)Qx,y),由已知得點Q在FP的中垂線上,……………………………1分

 即|QP|=|QF|. ……………………………………………………………………2分

 根據(jù)拋物線的定義知點Q在以F為焦點,直線m為準線的拋 物線上,…4分

 所以點Q的軌跡方程為y2=4x(x≠0). …………………………………………6分

(注:沒有寫出x≠0扣1分)

(Ⅱ)當(dāng)直線l的斜率不存在時,點A坐標(biāo)為(2,),點B坐標(biāo)為(2,-),

   ∵點F坐標(biāo)為(1,0),可以推出∠AFB…………………………………8分

    當(dāng)直線l的斜率存在時,

    設(shè)l的方程為y=k(x-2),它與拋物線y2=4x的交點坐標(biāo)分別為A(x1,y1),

B(x2,y2)

x1x2=4,y1y2=-8.……………………………………10分

假定θ=,則有cosθ=,

如圖,即,           (*)

由定義得|AF|=x1+1,|BF|=x2+1.

從而有|AF|2+|BF|2-|AB|2

=(x1+1)2+(x2+1)2-(x1x2)2-(y1y2)2

=-2(x1+x2)-6

∴|AF|?|BF|=(x1+1)(x2+1)=x1x2+x1+x2+1=x1+x2+5.…………………………12分

將上式代入(*)得,即x1+x2+1=0.

這與x1>0且x2>0相矛盾.

綜上,θ不能等于.…………………………………………………………14分

(20)(共14分)

解:(Ⅰ)=-3x2+2ax.………………………………………………………………1分

           據(jù)題意,=tan=1, ∴-3+2a=1,即a=2.……………………………3分

     (Ⅱ)由(Ⅰ)知f(x)=x3+2x24,

fx)=3x2+4x.

x

1

1,0)

0

(0,1)

1

fx

7

0

+

1

fx

1

*4

3

…………………………………………………………………………………5分

∴對于m[1,1],fm)的最小值為f(0)=4……………………………6分

f′(x)=3x2+4x的對稱軸為x=,且拋物線開口向下,

x[1,1]時,f′(x)最小值為f′(*1)與f′(1)中較小的.

f′(1)=1, f′(1)=7,

∴當(dāng)x[1,1]時,f′(x)最小值為7.

∴當(dāng)n[1,1]時,f′(n)最小值為7.……………………………………7分∴fm)+ f′(n)的最小值為11.……………………………………………8分(Ⅲ)∵f′(x)=3xx).

①若a≤0,當(dāng)x>0時,f′(x)<0, ∴fx)在[0,+∞]上單調(diào)遞減.

f(0)=4,則當(dāng)x>0時, fx)<4.

∴當(dāng)a≤0時,不存在x0>0,使fx0)>0.…………………………………11分

②若a>0,則當(dāng)0<x時,f′(x)>0,當(dāng)x時,f′(x)<0.

從而f(x)在(0, ]上單調(diào)遞增,在[,+∞)上單調(diào)遞減.

∴當(dāng)x(0,+∞)時,fxmax=f)=+4=4.

據(jù)題意,4>0,即a3>27. ∴a>3. …………………………………14分

綜上,a的取值范圍是(3,+∞).

 

說明:其他正確解法按相應(yīng)步驟給分.

 


同步練習(xí)冊答案