江蘇省鹽城市2008-2009高三第一次調(diào)研考試
數(shù)學(xué)
(總分160分,考試時(shí)間120分鐘)
參考公式:線性回歸方程的系數(shù)公式為.
一、填空題:本大題共14小題,每小題5分,計(jì)70分.不需寫出解答過程,請(qǐng)把答案寫在答題紙的指定位置上.
1.已知角的終邊過點(diǎn)(-5,12),則=____▲____.
2.設(shè)(為虛數(shù)單位),則=____▲____.
3.如圖,一個(gè)幾何體的主視圖與左視圖都是邊長(zhǎng)為2的正方形,其俯視圖是直徑為2的圓,則該幾何體的表面積為____▲____.
4.設(shè)不等式組所表示的區(qū)域?yàn)?sub>,現(xiàn)在區(qū)域中任意丟進(jìn)一個(gè)粒子,則該粒子落在直線上方的概率為____▲____.
5. 某單位為了了解用電量y度與氣溫之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4天的用電量與當(dāng)天氣溫,并制作了對(duì)照表:
氣溫(
18
13
10
-1
用電量(度)
24
34
38
64
由表中數(shù)據(jù)得線性回歸方程中,預(yù)測(cè)當(dāng)氣溫為時(shí),用電量的度數(shù)約為____▲____.
6.設(shè)方程的解為,則關(guān)于的不等式的最大整數(shù)解為____▲____.
7.對(duì)一個(gè)作直線運(yùn)動(dòng)的質(zhì)點(diǎn)的運(yùn)動(dòng)過程觀測(cè)了8次,得到如下表所示的數(shù)據(jù).
觀測(cè)次數(shù)
1
2
3
4
5
6
7
8
觀測(cè)數(shù)據(jù)
40
41
43
43
44
46
47
48
在上述統(tǒng)計(jì)數(shù)據(jù)的分析中,一部分計(jì)算見如圖所示的算法流程圖(其中是這8個(gè)數(shù)據(jù)的平均數(shù)),則輸出的S的值是____▲____.
8.設(shè)為曲線上一點(diǎn),曲線在點(diǎn)處的切線的斜率的范圍是,則點(diǎn)縱坐標(biāo)的取值范圍是____▲____.
9.已知是等比數(shù)列,,則=____▲____.
10.在平面直角坐標(biāo)平面內(nèi),不難得到“對(duì)于雙曲線()上任意一點(diǎn),若點(diǎn)在軸、軸上的射影分別為、,則必為定值”.類比于此,對(duì)于雙曲線(,)上任意一點(diǎn),類似的命題為:____▲____.
11.現(xiàn)有下列命題:①命題“”的否定是“”;② 若,,則=;③函數(shù)是偶函數(shù)的充要條件是;④若非零向量滿足,則的夾角為 60º.其中正確命題的序號(hào)有____▲____.(寫出所有你認(rèn)為真命題的序號(hào))
12.設(shè)分別是橢圓的左頂點(diǎn)與右焦點(diǎn),若在其右準(zhǔn)線上存在點(diǎn),使得線段的垂直平分線恰好經(jīng)過點(diǎn),則橢圓的離心率的取值范圍是____▲____.
13.如圖,在三棱錐中, 、、兩兩垂直,且.設(shè)是底面內(nèi)一點(diǎn),定義,其中、、分別是三棱錐、 三棱錐、三棱錐的體積.若,且恒成立,則正實(shí)數(shù)的最小值為____▲____.
14.若關(guān)于的不等式至少有一個(gè)負(fù)數(shù)解,則實(shí)數(shù)的取值范圍是____▲____.
二、解答題:本大題共6小題,計(jì)90分.解答應(yīng)寫出必要的文字說明,證明過程或演算步驟,請(qǐng)把答案寫在答題紙的指定區(qū)域內(nèi).
15. (本小題滿分14分)
已知在中,,分別是角所對(duì)的邊.
(Ⅰ)求;
(Ⅱ)若,,求的面積.
16. (本小題滿分14分)
如圖,在四棱錐中,側(cè)面底面,側(cè)棱,底面是直角梯形,其中,,,是上一點(diǎn).
(Ⅰ)若,試指出點(diǎn)的位置;
(Ⅱ)求證:.
17. (本小題滿分15分)
如圖,某小區(qū)準(zhǔn)備在一直角圍墻內(nèi)的空地上植造一塊“綠地”,其中長(zhǎng)為定值, 長(zhǎng)可根據(jù)需要進(jìn)行調(diào)節(jié)(足夠長(zhǎng)).現(xiàn)規(guī)劃在的內(nèi)接正方形內(nèi)種花,其余地方種草,且把種草的面積與種花的面積的比值稱為“草花比”.
(Ⅰ)設(shè),將表示成的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)為多長(zhǎng)時(shí),有最小值?最小值是多少?
18. (本小題滿分15分)
已知過點(diǎn),且與:關(guān)于直線對(duì)稱.
(Ⅰ)求的方程;
(Ⅱ)設(shè)為上的一個(gè)動(dòng)點(diǎn),求的最小值;
(Ⅲ)過點(diǎn)作兩條相異直線分別與相交于,且直線和直線的傾斜角互補(bǔ),為坐標(biāo)原點(diǎn),試判斷直線和是否平行?請(qǐng)說明理由.
19. (本小題滿分16分)
已知函數(shù)定義域?yàn)?sub>(),設(shè).
(Ⅰ)試確定的取值范圍,使得函數(shù)在上為單調(diào)函數(shù);
(Ⅱ)求證:;
(Ⅲ)求證:對(duì)于任意的,總存在,滿足,并確定這樣的的個(gè)數(shù).
20. (本小題滿分16分)
在正項(xiàng)數(shù)列中,令.
(Ⅰ)若是首項(xiàng)為25,公差為2的等差數(shù)列,求;
(Ⅱ)若(為正常數(shù))對(duì)正整數(shù)恒成立,求證為等差數(shù)列;
(Ⅲ)給定正整數(shù),正實(shí)數(shù),對(duì)于滿足的所有等差數(shù)列,
求的最大值.
鹽城市2008/2009高三第一次調(diào)研考試數(shù)學(xué)附加題
(總分40分,考試時(shí)間30分鐘)
21.[選做題] 在A、B、C、D四小題中只能選做2題,每小題10分,計(jì)20分.請(qǐng)把答案寫在答題紙的指定區(qū)域內(nèi).
A.(選修4―1:幾何證明選講)
如圖,⊙的內(nèi)接三角形,⊙的切線,
交于點(diǎn),交⊙于點(diǎn),若,
.
B.(選修4―2:矩陣與變換)
二階矩陣M對(duì)應(yīng)的變換將點(diǎn)(1,-1)與(-2,1)分別變換成點(diǎn)(-1,-1)與(0,-2).
(Ⅰ)求矩陣M的逆矩陣;
(Ⅱ)設(shè)直線在變換M作用下得到了直線m:2x-y=4,求的方程.
C.(選修4―4:坐標(biāo)系與參數(shù)方程)
在極坐標(biāo)系中,設(shè)圓上的點(diǎn)到直線的距離為,求的最大值.
D.(選修4―5:不等式選講)
設(shè)為正數(shù)且,求證:.
[必做題] 第22、23題,每小題10分,計(jì)20分.請(qǐng)把答案寫在答題紙的指定區(qū)域內(nèi).
22.(本小題滿分10分)
如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(Ⅰ)求點(diǎn)A到平面PBD的距離;
(Ⅱ)求二面角A―PB―D的余弦值.
23. (本小題滿分10分)
袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為.現(xiàn)在甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到兩人中有一人取到白球時(shí)即終止.每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的,用表示取球終止時(shí)所需要的取球次數(shù).
(Ⅰ)求袋中原有白球的個(gè)數(shù);
(Ⅱ)求隨機(jī)變量的概率分布及數(shù)學(xué)期望;
(Ⅲ)求甲取到白球的概率.
鹽城市2008/2009高三第一次調(diào)研
一、填空題:本大題共14小題,每小題5分,計(jì)70分.
1. 2. 3. 4. 5.68
6. 4 7. 7 8. 9.
10. 若點(diǎn)P在兩漸近線上的射影分別為、,則必為定值
11.②③ 12. 13.1 14.
二、解答題:本大題共6小題,計(jì)90分.
15. 解: (Ⅰ)因?yàn)?sub>,∴,則…………………………(4分)
∴……………………………………………………………(7分)
(Ⅱ)由,得,∴……………………………(9分)
則 ……………………………(11分)
由正弦定理,得,∴的面積為………(14分)
16. (Ⅰ)解:因?yàn)?sub>,,且,
所以…………………………………………………………………………(4分)
又,所以四邊形為平行四邊形,則……………………(6分)
而,故點(diǎn)的位置滿足……………………………………(7分)
(Ⅱ)證: 因?yàn)閭?cè)面底面,,且,
所以,則………………………………………………(10分)
又,且,所以…(13分)
而,所以………………………………………(14分)
17. 解:(Ⅰ)因?yàn)?sub>,所以的面積為()…………(2分)
設(shè)正方形的邊長(zhǎng)為,則由,得,
解得,則……………………………………………………(6分)
所以,則…(9分)
(Ⅱ)因?yàn)?sub>,所以…(13分)
當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí).所以當(dāng)長(zhǎng)為時(shí),有最小值1…………(15分)
18. 解:(Ⅰ)設(shè)圓心,則,解得……………………(3分)
則圓的方程為,將點(diǎn)的坐標(biāo)代入得,故圓的方程為…5分)
(Ⅱ)設(shè),則,且………………(7分)
==,
所以的最小值為(可由線性規(guī)劃或三角代換求得)……………………………(10分)
(Ⅲ)由題意知, 直線和直線的斜率存在,且互為相反數(shù),故可設(shè),
,由,
得 ……………………………………………(11分)
因?yàn)辄c(diǎn)的橫坐標(biāo)一定是該方程的解,故可得…………………(13分)
同理,,
所以=
所以,直線和一定平行…………………………………………………(15分)
19. (Ⅰ)解:因?yàn)?sub>…………………………………(2分)
由;由,
所以在上遞增,在上遞減 …………………………(4分)
欲在上為單調(diào)函數(shù),則……………………………………(5分)
(Ⅱ)證:因?yàn)?sub>在上遞增,在上遞減,
所以在處取得極小值(7分)
又,所以在上的最小值為 ……………(9分)
從而當(dāng)時(shí),,即……………………………………(10分)
(Ⅲ)證:因?yàn)?sub>,所以即為,
令,從而問題轉(zhuǎn)化為證明方程=0
在上有解,并討論解的個(gè)數(shù)………………………………………………(12分)
因?yàn)?sub>,,
所以 ①當(dāng)時(shí),,
所以在上有解,且只有一解 ……(13分)
②當(dāng)時(shí),,但由于,
所以在上有解,且有兩解 ……………………………………………(14分)
③當(dāng)時(shí),,所以在上有且只有一解;
當(dāng)時(shí),,
所以在上也有且只有一解……………………………………………(15分)
綜上所述, 對(duì)于任意的,總存在,滿足,
且當(dāng)時(shí),有唯一的適合題意;
當(dāng)時(shí),有兩個(gè)適合題意……………………………………………………(16分)
(說明:第(Ⅱ)題也可以令,,然后分情況證明在其值域內(nèi),并討論直線與函數(shù)的圖象的交點(diǎn)個(gè)數(shù)即可得到相應(yīng)的的個(gè)數(shù))
20.(Ⅰ)解:由題意得,,所以=……………(4分)
(Ⅱ)證:令,,則=1……………………………………(5分)
所以=(1),=(2),
(2)―(1),得―=,
化簡(jiǎn)得(3)……………………………………………………(7分)
(4),(4)―(3)得……(9分)
在(3)中令,得,從而為等差數(shù)列 …………………………………(10分)
(Ⅲ)記,公差為,則=…………(12分)
則,
………………………………(14分)
則,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立……(16分)
數(shù)學(xué)附加題部分
21.A.(幾何證明選講選做題)
解:因?yàn)镻B=PD+BD=1+8=9,=PD?BD=9,PA=3,AE=PA=3,連結(jié)AD,在中,得……(5分)
又,所以 …………………………………………………………………(10分)
B.(矩陣與變換選做題)
解: (Ⅰ)設(shè),則有=,=,
所以,解得 …………………………………………(4分)
所以M=,從而= ………………………………………………(7分)
(Ⅱ)因?yàn)?sub>且m:2,
所以2(x+2y)-(3x+4y)=4,即x+4 =0,這就是直線l的方程 ……………………………(10分)
C.(坐標(biāo)系與參數(shù)方程選做題)
解:將極坐標(biāo)方程轉(zhuǎn)化為普通方程:………………………………(2分)
可化為 ………………………………………(5分)
在上任取一點(diǎn)A,則點(diǎn)A到直線的距離為
,它的最大值為4 ………………(10分)
D.(不等式選講選做題)
證:左=
…………………………(5分)
……………………………………………………(10分)
22.解:以O(shè)A、OB所在直線分別x軸,y軸,以過O且垂直平面ABCD的直線為z軸,建立空間直角坐標(biāo)系,則,…(2分)
(Ⅰ)設(shè)平面PDB的法向量為,
由,
所以=………………………………(5分)
(Ⅱ)設(shè)平面ABP的法向量,,
,,
,而所求的二面角與互補(bǔ),
所以二面角A―PB―D的余弦值為………………………………………………(10分)
23.解:(Ⅰ)設(shè)袋中原有n個(gè)白球,由題意知:,所以=12,
解得n=4(舍去),即袋中原有4個(gè)白球………………………………………(3分)
(Ⅱ)由題意,的可能取值為1,2,3,4……………………………………………(4分)
,
所以,取球次數(shù)的分布列為:
1
2
3
4
P
(6分)
……………………………………………………………(8分)
(Ⅲ)因?yàn)榧紫热?所以甲只有可能在第1次和第3次取球,記“甲取到白球”的事件為A,
則或 “=3”),所以……………(10分)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com