海南省海南中學(xué)2009屆高三第六次月考學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

數(shù)學(xué)(文科)試題學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

時(shí)間:120分鐘    滿分150分學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

第Ⅰ卷學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

一,       選擇題(本大題共12小題,每小題 5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

1,設(shè)函數(shù)y=ln(1-x)的定義域?yàn)锳,函數(shù)y=6ec8aac122bd4f6e的定義域?yàn)锽,則A∩B=學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

A,[0,1]         B,[0,1)        C,(0,1)          D,(0,1]學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

2,           設(shè)直線ax+by+c=0的傾斜角為α,且sinα+cosα=0,則a,b滿足學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

A,a+b=1      B,a-b=   C,a+b=0       D,a-b=0學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

3,直線x+a2y+1=0與(a2+1)x-by+3=0互相垂直,a,b∈R,則|ab|的最小值是學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

A,1         B,       C,4           D,5學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

4,以線段AB:x+y-2=0(0≤x≤2)為直經(jīng)的園的方程為學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

A,(x+1)2+(y+1)2=2               B, (x-1)2+(y-1)2=2 學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

C,(x+1)2+(y+1)2=8               D,(x-1)2+(y-1)2=8學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

5,設(shè)直線過點(diǎn)(a,0),其斜率為-1,且與園x2+y2=1相切,則a的值為學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

A,6ec8aac122bd4f6e       B,6ec8aac122bd4f6e       C,6ec8aac122bd4f6e      D,6ec8aac122bd4f6e學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

6, 在等比數(shù)列6ec8aac122bd4f6e中,an>an+1,且a7a11=6,a4+a14=5,則6ec8aac122bd4f6e=學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

6ec8aac122bd4f6e學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

7,到兩定點(diǎn)6ec8aac122bd4f6e6ec8aac122bd4f6e的距離之差為4的點(diǎn)M的軌跡是:(  )學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

A、橢圓       B、一條線段     C 、一條射線      D、雙曲線的一支學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

8,動(dòng)園的圓心在拋物線y2=8x上,且動(dòng)圓恒與直線x+2=0相切,則動(dòng)圓必過點(diǎn)學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

A,(4,0)     B,(2,0)     C,(0,2)      D,(0,-2)學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

9,若平面α⊥平面β,L、m、n為兩兩互不重合的三條直線,m6ec8aac122bd4f6eα,n6ec8aac122bd4f6eβ,α∩β=L且m⊥n,則學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

A,m⊥L且n∥L                      B,m⊥L或n∥L  學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

C ,m⊥L且n⊥L                    D, m⊥L或n⊥L學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

10,在平面直角坐標(biāo)系中,已知向量6ec8aac122bd4f6e學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

A,-4          B,        C,4         D,7學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

11,拋物線6ec8aac122bd4f6e中,以6ec8aac122bd4f6e為中點(diǎn)的弦所在直線的方程為:(    )學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

 A、 6ec8aac122bd4f6e   B、x+4y-3=0  C、6ec8aac122bd4f6e D、6ec8aac122bd4f6e學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

12, 已知F1、F2是橢圓的兩個(gè)焦點(diǎn),滿足6ec8aac122bd4f6e的點(diǎn)M總在橢圓內(nèi)部,則橢圓離心率的取值范圍是學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

A,(0,1)    B,6ec8aac122bd4f6e       C,6ec8aac122bd4f6e      D,6ec8aac122bd4f6e學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

第Ⅱ卷學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

二,填空題(本大題共4小題,每小題5分,共20分,把答案填在答卷題中的橫線上)學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

13.已知函數(shù)6ec8aac122bd4f6e,則過曲線6ec8aac122bd4f6e上的點(diǎn)(2,3)的切線方程為         學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)14,若橢圓6ec8aac122bd4f6e的離心率6ec8aac122bd4f6e,則6ec8aac122bd4f6e的值是學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

15,已知一個(gè)與球心距離為2的平面截球所得的圓面面積為6ec8aac122bd4f6e,則 球的表面積是學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)16,若過原點(diǎn)的直線L與曲線(x-2)2+y2=1有公共點(diǎn),則直線的斜率的取值范圍是學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

三,解答題:(本大題共6小題共70分。解答應(yīng)寫出文字說明,證明過程或演算步驟,請把答案寫在答題紙的指定區(qū)域內(nèi))學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

17,(本小題滿分12分)學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

已知雙曲線的漸近線方程是6ec8aac122bd4f6e,經(jīng)過點(diǎn)6ec8aac122bd4f6e,求曲線的的標(biāo)準(zhǔn)方程.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

18, (本小題滿分12分)學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

已知?jiǎng)訄A過定點(diǎn)(1,0),且與直線x=-1相切,學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

(1)求動(dòng)圓的圓心軌跡C的方程.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

(2)是否存在直線L,使L過點(diǎn)(0,1),并與軌跡C交于P、Q兩點(diǎn),且滿足學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

6ec8aac122bd4f6e ?若存在,求出直線L的方程;若不存在,說明理由.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

19, (本小題滿分12分)學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)如圖所示,已知三棱錐P-ABC,∠ACB=90O,CB=4,AB=20,D為AB的中點(diǎn),M為PB的中點(diǎn),且△PDB是正三角形,PA⊥PC,                              P學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

(1)求證:DM//平面PAC;學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

(2)求證:平面PAC⊥平面ABC;                        學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

(3)求三棱錐M-BCD的體積.                               C    M學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

                                     A             D               B學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

 學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

20,(本小題滿分12分)學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

橢圓的中心在原點(diǎn),離心率e=6ec8aac122bd4f6e,且它的一個(gè)焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

(1)           求橢圓的方程;學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

(2)           設(shè)圓M經(jīng)過橢圓的右頂點(diǎn),且圓心M在拋物線y2=4x上,EG是圓M被y軸截得的弦,試探究當(dāng)M運(yùn)動(dòng),弦長6ec8aac122bd4f6e是否為定值?為什么?學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

21,(本小題滿分12分)學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

已知函數(shù)6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e)的圖象關(guān)于原點(diǎn)對稱.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

(1)寫出6ec8aac122bd4f6e的解析式;學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

(2)若函數(shù)6ec8aac122bd4f6e為奇函數(shù),試確定實(shí)數(shù)6ec8aac122bd4f6e的值;學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

(3)當(dāng)6ec8aac122bd4f6e時(shí),總有6ec8aac122bd4f6e成立,求實(shí)數(shù)6ec8aac122bd4f6e的取值范圍.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

 

 

 

 

 

四,選做題:請考生在第22、23、24題中任選一題做答,如果多做,則按所做的第一題記分.

 

22, (本小題滿分10分)(幾何證明選講)

已知AB是⊙O直徑,ED切⊙O于D,EM⊥AB于M,交AD于C,交⊙O于F,

求證:EC=ED .                                     

 

 

                                                     

 

 

23,(本小題滿分10分)(坐標(biāo)系與參數(shù)方程選講)

已知直線6ec8aac122bd4f6e經(jīng)過點(diǎn)6ec8aac122bd4f6e,傾斜角6ec8aac122bd4f6e

(1)寫出直線6ec8aac122bd4f6e的參數(shù)方程.

(2)設(shè)6ec8aac122bd4f6e與圓6ec8aac122bd4f6e相交與兩點(diǎn)6ec8aac122bd4f6e,求點(diǎn)6ec8aac122bd4f6e6ec8aac122bd4f6e兩點(diǎn)的距離之積.

 

 

 

 

 

 

 

24,(本小題滿分10分)(不等式選講)

解不等式:6ec8aac122bd4f6e

 


同步練習(xí)冊答案