2009屆江西省高三數(shù)學(xué)模擬試題分類匯編立體幾何

一 選擇題

1. (江西贛州市十縣(市)重點(diǎn)中學(xué)09年上學(xué)期聯(lián)考)

平面平面的一個(gè)充分條件是                      (  )

       A.存在一條直線

       B.存在一條直線

       C.存在兩條平行直線

       D.存在兩條異面直線

答案:D

2.(江西省五校09屆第二次月考)

有一正方體,六個(gè)面上分別寫有數(shù)字1、2、3、4、5、6,有三個(gè)人從不同的角度觀察的結(jié)果如圖所示.如果記3的對(duì)面的數(shù)字為m,4的對(duì)面的數(shù)字為n,那么m+n的值為(    )

       A.3      B.7       C.8      D.11

       

       

       

       

       

       

      答案:C

      3.(江西贛州市十縣(市)重點(diǎn)中學(xué)2008―2009學(xué)年度上學(xué)期聯(lián)考)

      三棱錐中, , △是斜邊

      的等腰直角三角形, 則以下結(jié)論中: ① 異面直線與    

      所成的角為; ② 直線平面; ③ 面面       

      ; ④ 點(diǎn)到平面的距離是. 其中正確結(jié)論的序號(hào)是

       _______________ .

      答案:①.②.③.④

       

       

      二 填空題

      1.(江西贛州市十縣(市)重點(diǎn)中學(xué)09年上學(xué)期聯(lián)考)

      三棱錐中, , △是斜邊的等腰直角三角形, 則以下結(jié)論中: ① 異面直線*所成的角為; ② 直線平面; ③ 面*; ④ 點(diǎn)到平面的距離是. 其中正確結(jié)論的序號(hào)是_______________ .

      答案: ①.②.③.④

      2.(江西省五校09屆第二次月考)

      給出下列五個(gè)命題:

             ①有兩個(gè)對(duì)角面是全等的矩形的四棱柱是長(zhǎng)方體.

             ②函數(shù)y=sinx在第一象限內(nèi)是增函數(shù).

             ③f(x)是單調(diào)函數(shù),則f(x)與f-1(x)具有相同的單調(diào)性.

             ④一個(gè)二面角的兩個(gè)平面分別垂直于另一個(gè)二面的兩個(gè)平面,則這兩個(gè)二面角的平面角

      相等或互為補(bǔ)角.

             ⑤當(dāng)橢圓的離心率e越接近于0時(shí),這個(gè)橢圓的形狀就越接近于圓.

      其中正確命題的序號(hào)為                       .

      答案: ③  ⑤

      3.(江西琴海學(xué)校09屆高三第三次月考)

      半徑為的球面上有A、B、C三點(diǎn),AB=6,BC=8,AC=10,則球心到平面ABC的距離為          .

      答案:  5

       

      三 解答題

      1. (江西贛州一中) 如圖,平面平面,四邊形都是直角梯形,,

      (Ⅰ)證明:四點(diǎn)共面;

      (Ⅱ)設(shè),求二面角的大小.

       

       

       

       

      【解】:(Ⅰ)延長(zhǎng)的延長(zhǎng)線于點(diǎn),由

               

      延長(zhǎng)的延長(zhǎng)線于同理可得

      ,即重合

      因此直線相交于點(diǎn),即四點(diǎn)共面。

      (Ⅱ)設(shè),則,

      中點(diǎn),則,

      又由已知得,平面

      ,與平面內(nèi)兩相交直線都垂直。

      所以平面,作,垂足為,連結(jié)

      由三垂線定理知為二面角的平面角。

         

        故

      所以二面角的大小

      2.(江西省五校09屆第二次月考)

      如圖正三棱柱中,底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為,若經(jīng)過對(duì)角線且與對(duì)角線平行的平面交上底面于。

         (1)試確定點(diǎn)的位置,并證明你的結(jié)論;

         (2)求二面角的大;

       

       

       

       

      解:(1)的中點(diǎn).連結(jié)交于,

      的中點(diǎn),為平面與平面的交線,

      //平面

      //,∴的中點(diǎn)。

      (2)過,由正三棱柱的性質(zhì),平面,連結(jié),在正中,的中點(diǎn),又在直角三角形中,所以可得

      .則為二面角的大小,可求得,

      ,

      ,∴.即所求.

      (2)解法(二)(空間向量法)

      建立如圖所示空間直角坐標(biāo)系,則

      ,

      。

      設(shè)是平面的一個(gè)法向量,則可得

      ,所以.所以可得

      又平面的一個(gè)法向量設(shè)

      又可知二面角是銳角,所以二面角 的大小是

       

       

       

       

      3.(江西琴海學(xué)校09屆高三第三次月考)

      如圖:正三棱柱ABC―A1B1C1中,D是BC的中點(diǎn),AA1=AB=1.

      (1)求證:A1C//平面AB1D;

      (2)求二面角B―AB1―D的大小;

      (3)求點(diǎn)C到平面AB1D的距離.

       

       

       

      (1)連接A1B,設(shè)A1B∩AB1=E,連結(jié)DE,

      ∵ABC―A1B1C是正三棱柱且AA1=AB,

      ∴四邊形A1ABB1是正方形,∴E是A1B的中點(diǎn),

      又D是BC的中點(diǎn),∴DE//A1C ……………………3分

      DE平面AB1D,A1C平面AB1D,∴A1C//平面AB1D  ……………………4分

      (2)在平面ABC內(nèi)作DF⊥AB于點(diǎn)F,在平面A1ABB1內(nèi)作FG⊥AB1于點(diǎn)G,連結(jié)DG。

      ∵平面A1ABB1⊥平面ABC,

      ∴DF⊥平面A1ABB1,F(xiàn)G是DG在平面A1ABB1上的射影,

      ∵FG⊥AB1, ∴DG⊥AB1, ∴∠FGD是二面角B―AB1―D的平面角 ……6分

      ∵A1A=AB=1,在正△ABC中,,在△ABE中,F(xiàn)G=

      在Rt△DFG中,,

      ∴二面角B―AB1―D的大小為  ……………………8分

      (3)∵平面B­1BC1⊥平面ABC且AD⊥BC,∴AD⊥平面B1BCC1,

      又AD平面AB1D,∴平面B1BCC1⊥平面AB1D,

      在平面B1BCC1內(nèi)作CH⊥B1D交B1D的延長(zhǎng)線于點(diǎn)H,則

      CH的長(zhǎng)度就是點(diǎn)C到平面ABCD的距離

      由△CDH∽△B1DB得:

      即點(diǎn)C到平面AB1D的距離是   ……………………………………12分

       

       


      同步練習(xí)冊(cè)答案