山東省濱州市2009年3月一模

            數(shù)學(xué)試題(文科)    2009.3

本試卷共4頁,分第I卷(選擇題)和第II卷(非選擇題)兩部分.共150分,考試時(shí)間120分鐘.考生作答時(shí),將答案答在答題卡上,在本試卷上答題無效.考試結(jié)束后,將本試卷和答題卡一并交回.

參考公式:

樣本數(shù)據(jù),,,的方差

,其中為樣本平均數(shù).

錐體體積公式,其中為底面面積、為高.

球的表面積、體積公式 其中為球的半徑.

第Ⅰ卷(選擇題 共60分)

注意事項(xiàng):

1. 答第Ⅰ卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)考試科目填寫在答題卡上.

2. 第Ⅰ卷選擇題每題選出答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑.(注意:為方便本次閱卷,請(qǐng)將第Ⅰ卷選擇題的答案涂在另一張答題卡上)如需改動(dòng),用橡皮擦干凈后,再改涂其他答案標(biāo)號(hào).

 

一、選擇題:本大題共12小題,每小題5分,滿分60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.

(1)集合A={-1,0,1},B={},則AB=    

      (A) {0}         (B) {1}             (C){0,1}          (D){-1,0,1}

試題詳情

(2)已知,且為實(shí)數(shù),則等于

試題詳情

(A) 1         (B)­              (C)           (D)

試題詳情

(3)使不等式成立的必要不充分條件是

試題詳情

       (A)             (B)

試題詳情

(C)              (D) ,或

(4)右圖是一個(gè)幾何體的三視圖,根據(jù)圖中數(shù)據(jù),

可得該幾何體的表面積為

試題詳情

 (A)32              (B)16

試題詳情

 (C)12              (D)8

試題詳情

(5)偶函數(shù)在區(qū)間[0,]()上是單調(diào)函數(shù),且,則方程 在區(qū)間[-]內(nèi)根的個(gè)數(shù)是

    (A) 3          (B) 2                          (C) 1                           (D)0

試題詳情

(6)在等比數(shù)列6ec8aac122bd4f6e的值為

       (A) 9            (B) 1                       (C)2                            (D)3

試題詳情

(7)在區(qū)域內(nèi)任取一點(diǎn),則點(diǎn)落在單位圓內(nèi)的概率為

試題詳情

   (A)          (B)            (C)                (D)

試題詳情

(8)以雙曲線的中心為頂點(diǎn),右焦點(diǎn)為焦點(diǎn)的拋物線方程是

試題詳情

   (A)      (B)      (C)     (D)

試題詳情

(9)已知點(diǎn)在曲線上,且曲線在點(diǎn)處的切線與直線垂直,則點(diǎn)的坐標(biāo)為

   (A)(1,1)     (B)(-1,0)    (C)(-1,0)或(1,0)     (D)(1,0)或(1,1)

試題詳情

(10)已知函數(shù)的大致圖象如右圖,其中為常數(shù),則   

試題詳情

函數(shù)的大致圖象是

 

試題詳情

試題詳情

(11)定義運(yùn)算:,將函數(shù)的圖象向左平移)個(gè)單位,所得圖象對(duì)應(yīng)的函數(shù)為偶函數(shù),則的最小值為

試題詳情

(A)              (B)              (C)              (D)

(12)下列結(jié)論

試題詳情

①命題“”的否定是“”;

試題詳情

②當(dāng)時(shí),函數(shù)的圖象都在直線的上方;

試題詳情

③定義在上的奇函數(shù),滿足,則的值為0.

試題詳情

④若函數(shù)在定義域內(nèi)是增函數(shù),則實(shí)數(shù)的取值范圍為.

其中,正確結(jié)論的個(gè)數(shù)是

(A) 1               (B) 2              (C) 3             (D) 4

 

第Ⅱ卷(非選擇題 共90分)

注意事項(xiàng):

⒈ 第Ⅱ卷包括填空題和解答題共兩個(gè)大題.

試題詳情

⒉ 第Ⅱ卷所有題目的答案,使用0.5毫米的黑色中性(簽字)筆書寫,字體工整,筆跡清楚.

⒊ 請(qǐng)按照題號(hào)在各題的答題區(qū)域(黑色線框)內(nèi)作答,超出答題區(qū)域書寫的答案無效.

1,3,5

試題詳情

二、填空題:本大題共4小題,每小題4分,共16分.請(qǐng)把答案直接填寫在答題卡上相應(yīng)題號(hào)后的橫線上.

(14)在等差數(shù)列中,若,則數(shù)列的前11項(xiàng)和=       .

試題詳情

(15)對(duì)一個(gè)作直線運(yùn)動(dòng)的質(zhì)點(diǎn)的運(yùn)動(dòng)過程觀測(cè)了8次, 第次觀測(cè)

試題詳情

得到的數(shù)據(jù)為,具體如下表所示:

試題詳情

1

2

3

4

5

6

7

8

試題詳情

40

41

43

43

44

46

47

48

在對(duì)上述統(tǒng)計(jì)數(shù)據(jù)的分析中,一部分計(jì)算見如圖所示的算法流程 

試題詳情

圖(其中是這8個(gè)數(shù)據(jù)的平均數(shù)),則輸出的的值是_        .

試題詳情

(16)如果直線ykx+1與圓交于M、N

試題詳情

兩點(diǎn),且MN關(guān)于直線xy=0對(duì)稱,若為平面區(qū)域

試題詳情

內(nèi)任意一點(diǎn),則的取值范圍是            .

(17)(本小題滿分12分)

某高級(jí)中學(xué)共有學(xué)生2000人,各年級(jí)男、女生人數(shù)如下表:

 

高一

高二

高三

女生

373

x

y

男生

377

370

z

 

 

 

 

試題詳情

三、解答題:本大題共6小題,共74分.解答應(yīng)寫出文字說明、證明過程或演算步驟.

已知在全校學(xué)生中隨機(jī)抽取1名,抽到高二年級(jí)女生的概率是0.19.

(Ⅰ)現(xiàn)用分層抽樣的方法在全校抽取48名學(xué)生,問應(yīng)在高三年級(jí)抽取多少人?

試題詳情

(Ⅱ)已知求高三年級(jí)女生比男生多的概率.

 

(18)(本小題滿分12分)

試題詳情

已知、分別為的三邊、所對(duì)的角,向量,,且.

試題詳情

(Ⅰ)求角的大;

試題詳情

(Ⅱ)若,成等差數(shù)列,且,求邊的長(zhǎng).

 

試題詳情

(19)(本小題滿分12分)

試題詳情

如圖,三棱錐中,、、兩兩互相垂直,且,,、分別為、的中點(diǎn).

試題詳情

(Ⅰ)求證:平面;

試題詳情

(Ⅱ)求證:平面平面;

試題詳情

(Ⅲ)求三棱錐的體積.

 

 

 

 

 

 

 

(20)(本小題滿分12分)

試題詳情

已知等差數(shù)列的前項(xiàng)和為,公差成等比數(shù)列.

試題詳情

(Ⅰ)求數(shù)列的通項(xiàng)公式;

試題詳情

(Ⅱ)若從數(shù)列中依次取出第2項(xiàng)、第4項(xiàng)、第8項(xiàng),……,,……,按原來順序組成一個(gè)新數(shù)列,記該數(shù)列的前項(xiàng)和為,求的表達(dá)式.

 

(21)(本小題滿分12分)

試題詳情

已知定義在上的函數(shù)在區(qū)間上的最大值是5,最小值是-11.

試題詳情

(Ⅰ)求函數(shù)的解析式;

試題詳情

(Ⅱ)若時(shí),恒成立,求實(shí)數(shù)的取值范圍.

 

(22)(本小題滿分14分)

試題詳情

已知直線所經(jīng)過的定點(diǎn)恰好是橢圓的一個(gè)焦點(diǎn),且橢圓上的點(diǎn)到點(diǎn)的最大距離為8.

試題詳情

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

試題詳情

(Ⅱ)已知圓,直線.試證明:當(dāng)點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),直線與圓恒相交,并求直線被圓所截得弦長(zhǎng)的取值范圍.

 

 

 

試題詳情

    2009.3

一、選擇題

(1)B  (2)A  (3)B (4)C (5)B (6)D

(7)D   (8)C  (9)C (10)B (11)A (12)C

二、填空題

    1,3,5

    三、解答題

    (17)解:(Ⅰ)-             ---------------------------2分

    高三年級(jí)人數(shù)為-------------------------3分

    現(xiàn)用分層抽樣的方法在全校抽取48名學(xué)生,應(yīng)在高三年級(jí)抽取的人數(shù)為

    (人).                       --------------------------------------6分

    (Ⅱ)設(shè)“高三年級(jí)女生比男生多”為事件,高三年級(jí)女生、男生數(shù)記為.

    由(Ⅰ)知

    則基本事件空間包含的基本事件有

    共11個(gè),     ------------------------------9分

    事件包含的基本事件有

    共5個(gè)   

                    --------------------------------------------------------------11分

    答:高三年級(jí)女生比男生多的概率為.  …………………………………………12分

    (18)解:(Ⅰ)  …………2分

    中,由于,

                                            …………3分

    ,

                           

    ,所以,而,因此.…………6分

       (Ⅱ)由,

    由正弦定理得                                …………8分

    ,

    ,由(Ⅰ)知,所以    …………10分

    由余弦弦定理得 ,     …………11分

    ,

                                                   …………12分

    (19)(Ⅰ)證明:∵分別為、的中點(diǎn),∴.

         又∵平面平面

    平面                                         …………4分

    (Ⅱ)∵,∴平面.

    又∵,∴平面.

    平面,∴平面平面.               …………8分

    (Ⅲ)∵平面,∴是三棱錐的高.

    在Rt△中,.

        在Rt△中,.

     ∵,的中點(diǎn),

    ,

    .        ………………12分

    (20)解:(Ⅰ)依題意得

                                 …………2分

     解得,                                             …………4分

    .       …………6分

       (Ⅱ)由已知得,                  …………8分

                                                             ………………12分

    (21)解:(Ⅰ)

          令=0,得                        ………2分

    因?yàn)?sub>,所以可得下表:

    0

    +

    0

    -

    極大

                                                              ………………4分

    因此必為最大值,∴,因此,

         ,

        即,∴,

     ∴                                       ……………6分

    (Ⅱ)∵,∴等價(jià)于, ………8分

     令,則問題就是上恒成立時(shí),求實(shí)數(shù)的取值范圍,為此只需,即,                 …………10分

    解得,所以所求實(shí)數(shù)的取值范圍是[0,1].            ………………12分

    (22)解:(Ⅰ)由得,,

    所以直線過定點(diǎn)(3,0),即.                       …………………2分

     設(shè)橢圓的方程為,

    ,解得,

    所以橢圓的方程為.                    ……………………5分

    (Ⅱ)因?yàn)辄c(diǎn)在橢圓上運(yùn)動(dòng),所以,      ………………6分

    從而圓心到直線的距離

    所以直線與圓恒相交.                             ……………………9分

    又直線被圓截得的弦長(zhǎng)

    ,       …………12分

    由于,所以,則,

    即直線被圓截得的弦長(zhǎng)的取值范圍是.  …………………14分

     


    同步練習(xí)冊(cè)答案