2009年高三二輪專題強化數(shù)學(xué)  

概率與統(tǒng)計

題型一、排列、組合綜合問題

例1.①將數(shù)字1,2,3,4,5,6拼成一列,記第個數(shù)為,若,,,則不同的排列方法種數(shù)為(   )

A.18              B.30

試題詳情

     C.36               D.48

②某人有4種顏色的燈泡(每種顏色的燈泡足夠多),要在如圖所示的6個點A、B、C、A1、B1、C1上各裝一個燈泡,要求同一條線段兩端的燈泡不同色,則每種顏色的燈泡都至少用一個的安裝方法共有        種.

③某書店有11種雜志,2元1本的8種,1元1本的3種.小張用10元錢買雜志(每種至多買一本,10元錢剛好用完),則不同買法的種數(shù)是________.

試題詳情

變式:

試題詳情

1.如圖一環(huán)形花壇分成四塊,現(xiàn)有4種不同的花供選種,要求在每塊里種1種花,且相鄰的2塊種不同的花,則不同的種法總數(shù)為(  )

A.96                B.84                C.60                D.48

試題詳情

2.12名同學(xué)合影,站成前排4人后排8人,現(xiàn)攝影師要從后排8人中抽2人調(diào)整到前排,若其他人的相對順序不變,則不同調(diào)整方法的總數(shù)是(   )

試題詳情

A.            B.               C.            D.

題型二、二項式定理的應(yīng)用

試題詳情

例2.①若對于任意實數(shù),有,則的值為(  )

試題詳情

A.              B.           C.              D.

試題詳情

②如果的展開式中含有非零常數(shù)項,則正整數(shù)的最小值為( 。

A.10                B.6                C.5                D.3

變式:

試題詳情

1.設(shè)

試題詳情

的值為(  )

試題詳情

A.                    B.                C.                      D.

試題詳情

2.展開式中的系數(shù)為­___________

試題詳情

題型三、概率計算問題

例3.為做好食品安全工作,上級質(zhì)檢部門決定對甲、乙兩地的出口食品加工企業(yè)進行一次抽檢.已知甲地有蔬菜加工企業(yè)2家,水產(chǎn)品加工企業(yè)3家;乙地有蔬菜加工企業(yè)3家,水產(chǎn)品加工企業(yè)4家,現(xiàn)從甲、乙兩地各任意抽取2家企業(yè)進行檢查.

①求抽出的4家企業(yè)中恰有一家為蔬菜加工企業(yè)的概率;

②求抽出的水產(chǎn)品加工企業(yè)的家數(shù)不少于蔬菜加工企業(yè)家數(shù)的概率.

 

 

 

 

試題詳情

例4.某項考試按科目A、科目B依次進行,只有當(dāng)科目A成績合格時,才可繼續(xù)參加科目B的考試。已知每個科目只允許有一次補考機會,兩個科目成績均合格方可獲得證書。現(xiàn)某人參加這項考試,科目A每次考試成績合格的概率均為,科目B每次考試成績合格的概率均為。假設(shè)各次考試成績合格與否均互不影響.

(1)求他不需要補考就可獲得證書的概率;

(2)求他在這項考試過程中,恰好參加了一次補考且獲得證書的概率。

 

變式:

試題詳情

1.甲、乙兩名跳高運動員一次試跳米高度成功的概率分別是,,且每次試跳成功與否相互之間沒有影響,求:

(Ⅰ)甲試跳三次,第三次才成功的概率;

(Ⅱ)甲、乙兩人在第一次試跳中至少有一人成功的概率;

(Ⅲ)甲、乙各試跳兩次,甲比乙的成功次數(shù)恰好多一次的概率.

 

 

 

 

試題詳情

2.盒子里裝有大小相同的球8個,其中三個1號球,三個2號球,兩個3號球,第一次從盒子中先任取一個球,放回后第二次再任取一個球。

(1)求第一次與第二次取到的球上的號碼的和是4的概率;

(2)記第一次與第二次取到的球的號碼的積小于6的概率。

 

 

 

試題詳情

題型四、抽樣方法與統(tǒng)計問題

例5.①為了了解某學(xué)校學(xué)生的身體發(fā)育情況,抽查了該校100名高中男生的體重情況,根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖如右圖所示.根據(jù)此圖,估計該校2000名高中男生中體重大于70.5公斤的人數(shù)為(    )

A.300             B.360           C.420                D.450

 

試題詳情

②某商場有四類食品,其中糧食類、植物油類、動物性食品類及果蔬類分別有40種、10種、30種、20種,現(xiàn)從中抽取一個容量為20的樣本進行食品安全檢測。若采用分層抽樣的方法抽取樣本,則抽取的植物油類與果蔬類食品種數(shù)之和是(    )

(A)4                        (B)5                        (C)6                 (D)7

變式:

試題詳情

1.一個單位共有職工200人,其中不超過45歲的有120人,超過45歲的有80人.為了調(diào)查職工的健康狀況,用分層抽樣的方法從全體職工中抽取一個容量為25的樣本,應(yīng)抽取超過45歲的職工________________人.

試題詳情

2.某交高三年級有男生500人,女生400人,為了解該年級學(xué)生的健康情況,從男生中任意抽取25人,從女生中任意抽取20人進行調(diào)查.這種抽樣方法是  (    )

(A)簡單隨機抽樣法     (B)抽簽法      (C)隨機數(shù)表法              (D)分層抽樣法

 

反饋練習(xí)

試題詳情

1.如右圖,機器人亮亮從A地移動到B地,每次只移動一個單位長度,則亮亮從A移動到B最近的走法共有(   )種。

A.36                    B.60                   C.80                   D.59

試題詳情

2.為了解一片經(jīng)濟林的生長情況,隨機測量了其中100株樹林的底部周長(單位:cm)。根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖(如右),那么在這100株樹木中,底部周長小于110cm的株數(shù)是(   )

A、30               

B、60           

 C、70          

 D、80

試題詳情

3.甲、乙兩人進行乒乓球比賽,比賽規(guī)則為“3局2勝”,即以先贏2局者為勝.根據(jù)經(jīng)驗,每局比賽中甲獲勝的概率為0.6,則本次比賽甲獲勝的概率是(    )

試題詳情

   (A) 0.216       (B)0.36        (C)0.432       (D)0.648

試題詳情

4.將5本不同的書全發(fā)給4名同學(xué),每名同學(xué)至少有一本書的概率是(   )

試題詳情

A.             B.           C.             D.

試題詳情

5.一袋中裝有大小相同,編號分別為的八個球,從中有放回地每次取一個球,共取2次,則取得兩個球的編號和不小于15的概率為( 。

試題詳情

A.               B.               C.               D.

試題詳情

6.已知,則( 的值等于     .

試題詳情

7.二項式的展開式的各項系數(shù)和大于32小于128,則展開式中系數(shù)最大的項是       .  

試題詳情

8.在一個袋子中裝有分別標(biāo)注數(shù)字1,2,3,4,5的五個小球,這些小球除標(biāo)注的數(shù)字外完全相同.現(xiàn)從中隨機取出2個小球,則取出的小球標(biāo)注的數(shù)字之和為3或6的概率為          

試題詳情

9.一個壇子里有編號為1,2,…,12的12個大小相同的球,其中1到6號球是紅球,其余的是黑球.若從中任取兩個球,則取到的都是紅球,且至少有1個球的號碼是偶數(shù)的概率為  

試題詳情

10.在五個數(shù)字中,若隨機取出三個數(shù)字,則剩下兩個數(shù)字都是奇數(shù)的概率是      

試題詳情

11.某地區(qū)為下崗人員免費提供財會和計算機培訓(xùn),以提高下崗人員的再就業(yè)能力,每名下崗人員可以選擇參加一項培訓(xùn)、參加兩項培訓(xùn)或不參加培訓(xùn),已知參加過財會培訓(xùn)的有60%,參加過計算機培訓(xùn)的有75%. 假設(shè)每個人對培訓(xùn)項目的選擇是相互獨立的,且各人的選擇相互之間沒有影響.

(I)任選1名下崗人員,求該人參加過培訓(xùn)的概率;

(II)任選3名下崗人員,求這3人中至少有2人參加過培養(yǎng)的概率.

 

 

 

 

 

試題詳情

12.栽培甲、乙兩種果樹,先要培育成苗,然后再進行移栽.已知甲、乙兩種果樹成苗的概率分別為,,移栽后成活的概率分別為

(1)求甲、乙兩種果樹至少有一種果樹成苗的概率;

(2)求恰好有一種果樹能培育成苗且移栽成活的概率.

 

 

 

  (Ⅰ)求該選手進入第四輪才被淘汰的概率;

(Ⅱ)求該選手至多進入第三輪考核的概率. 

 

 

 

 

 

 

 

 

試題詳情

13.某項選拔共有四輪考核,每輪設(shè)有一個問題,能正確回答問題者進入下一輪考核,否則即被淘汰.已知某選手能正確回答第一、二、三、四輪的問題的概率分別為、、,且各輪問題能否正確回答互不影響.

14.設(shè)進入健身中心的每一位健身者選擇甲種健身項目的概率是,選擇乙種健身項目的概率是,且選擇甲種與選擇乙種健身項目相互獨立,各位健身者之間選擇健身項目是相互獨立的。

(Ⅰ)求進入該健身中心的1位健身者選擇甲、乙兩種項目中的一項的概率;

(Ⅱ)求進入該健身中心的4位健身者中,至少有2位既未選擇甲種又未選擇乙種健身項目的概率。

 

 

 

 

 

試題詳情


同步練習(xí)冊答案