機(jī)密★啟用前 【考試時(shí)間:5月5日 15:00~17:00】
昆明市2008~2009學(xué)年高三復(fù)習(xí)適應(yīng)性檢測(cè)
文科數(shù)學(xué)試卷
本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分。第Ⅰ卷1至3頁(yè),第Ⅱ卷4至6頁(yè)?荚嚱Y(jié)束后,將本試卷和答題卡一并交回。滿(mǎn)分150分,考試用時(shí)120分鐘。
第Ⅰ卷(選擇題,共60分)
注意事項(xiàng):
1. 答題前,考生務(wù)必用黑色碳素筆將自己的姓名、考號(hào)在答題卡上填寫(xiě)清楚,并認(rèn)真核準(zhǔn)條形碼上的考號(hào)、姓名,在規(guī)定的位置貼好條形碼。
2. 每小題選出答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑。如需改動(dòng),用橡皮擦擦干凈后,再選涂其它答案標(biāo)號(hào)。答在試卷上的答案無(wú)效。
參考公式:
如果事件A、B互斥,那么 球的表面積公式
如果事件A、B相互獨(dú)立,那么 其中R表示球的半徑
球的體積公式
如果事件A在一次試驗(yàn)中發(fā)生的概率是P,那么
n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率 其中R表示球的半徑
一、選擇題:本大題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。
(1)已知集合,,則
(A) (B) (C) (D)
(2)函數(shù)的定義域是
(A) (B) (C) (D)
(3)函數(shù)的最小正周期是
(A) (B) (C) (D)
(4)焦點(diǎn)在軸上,中心為原點(diǎn)的橢圓上一點(diǎn)到兩焦點(diǎn)的距離之和為,若該橢圓的離心率為,那么橢圓的方程是
(A) (B) (C) (D)
(5)若+++++,則等于
(A) (B) (C) (D)
(6)若函數(shù)的反函數(shù)是,則等于
(A) (B) (C) (D)
(7)若把汽車(chē)的行駛路程看作時(shí)間的函數(shù),下圖是函數(shù)在上的圖像,則在上汽車(chē)的行駛過(guò)程為
(A)先加速行駛、然后勻速行駛、再加速行駛
(B)先減速行駛、然后勻速行駛、再加速行駛
(C)先加速行駛、然后勻速行駛、再減速行駛
(D)先減速行駛、然后勻速行駛、再減速行駛
(8)在公差不為零的等差數(shù)列中,,、、成等比數(shù)列.若是數(shù)列的前項(xiàng)和,則等于
(A) (B) (C) (D)
(9)在正中,為邊上的高,為邊的中點(diǎn).若將沿翻折成直二面角,則異面直線(xiàn)與所成角的余弦值為
(A) (B) (C) (D)
(10)2名醫(yī)生和4名護(hù)士分配到兩所社區(qū)醫(yī)院進(jìn)行“健康普查”活動(dòng),每所醫(yī)院分配1名醫(yī)生和2名護(hù)士的不同分配方案共有
(A)6種 (B)8種 (C)12種 (D)24種
(11)已知點(diǎn),直線(xiàn),是坐標(biāo)原點(diǎn),是直線(xiàn)上的一點(diǎn),若,則的最小值是
(A) (B) (C) (D)
(12)若是實(shí)數(shù),則關(guān)于的方程組有四組不同實(shí)數(shù)解的一個(gè)充分非必要條件是
(A) (B) (C) (D)
機(jī)密★啟用前 【考試時(shí)間:5月5日 15:00~17:00】
昆明市2008~2009學(xué)年高三復(fù)習(xí)適應(yīng)性檢測(cè)
文科數(shù)學(xué)試卷
第Ⅱ卷(非選擇題,共90分)
注意事項(xiàng):
第Ⅱ卷 共3頁(yè),10小題 ,用黑色碳素筆將答案答在答題卡上,答在試卷上的答案無(wú)效。
二、填空題:本大題共4小題,每小題5分,共20分。把答案直接答在答題卡上。
(13)若角的終邊經(jīng)過(guò)點(diǎn),則的值等于 .
(14)若拋物線(xiàn)上一點(diǎn)到其焦點(diǎn)的距離為3,則點(diǎn)的橫坐標(biāo)等于 .
(15)已知三棱柱的側(cè)棱長(zhǎng)與底面邊長(zhǎng)都相等,在底面的射影是
的中點(diǎn),則與側(cè)面所成角的正切值等于 .
(16)某實(shí)驗(yàn)室至少需某種化學(xué)藥品
種包裝購(gòu)買(mǎi)的數(shù)量都不能超過(guò)5袋,則在滿(mǎn)足需要的條件下,花費(fèi)最少為 元.
(17)(本小題10分)
三、解答題:本大題共6小題,共70分,解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟。
在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,且.
(Ⅰ)求角B的大。
(Ⅱ)若△ABC的面積是,且,求b.
(18)(本小題12分)
如圖,四棱錐的底面是正方形,面.
(Ⅰ)證明:平面平面;
(Ⅱ)設(shè).為的中點(diǎn),求二面角的大。
(19)(本小題12分)
已知甲袋裝有1個(gè)紅球,4個(gè)白球;乙袋裝有2個(gè)紅球,3個(gè)白球.所有球大小都相同,現(xiàn)從甲袋中任取2個(gè)球,乙袋中任取2個(gè)球.
(Ⅰ)求取到的4個(gè)球全是白球的概率;
(Ⅱ)求取到的4個(gè)球中紅球個(gè)數(shù)不少于白球個(gè)數(shù)的概率.
(20)(本小題12分)
已知等比數(shù)列滿(mǎn)足:,且是的等差中項(xiàng).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列單調(diào)遞減,其前項(xiàng)和為,求使成立的正整數(shù)的最小值.
(21)(本小題12分)
已知雙曲線(xiàn)焦點(diǎn)在軸上、中心在坐標(biāo)原點(diǎn),左、右焦點(diǎn)分別為、,為雙曲線(xiàn)右支上一點(diǎn),且,.
(Ⅰ)求雙曲線(xiàn)的離心率;
(Ⅱ)若過(guò)且斜率為1的直線(xiàn)與雙曲線(xiàn)的兩漸近線(xiàn)分別交于、兩點(diǎn), 的面積為,求雙曲線(xiàn)的方程.
(22)(本小題12分)
已知函數(shù)
(Ⅰ)當(dāng)時(shí),若函數(shù)在上為增函數(shù),求實(shí)數(shù)的最小值;
(Ⅱ)設(shè)函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),在點(diǎn)處的切線(xiàn)為,與函數(shù)的圖像交于另一點(diǎn).若在軸上的射影分別為、,
,求的值.
昆明市2008~2009學(xué)年高三復(fù)習(xí)適應(yīng)性檢測(cè)
一.選擇題:本大題共12小題,每小題5分,共60分。
(1)A (2)B (3)B (4)A (5)D (6)D
(7)C (8)C (9)A (10)C (11)A (12)B
二.填空題:本大題共4小題,每小題5分,共20分。
(13) (14)2 (15) (16)44
三.解答題:本大題共6小題,共70分,解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟。
(17)(本小題滿(mǎn)分10分)
(Ⅰ)解法一:由正弦定理得.
故 ,
又 ,
故 ,
即 ,
故 .
因?yàn)? ,
故 ,
又 為三角形的內(nèi)角,
所以 . ………………………5分
解法二:由余弦定理得 .
將上式代入 整理得.
故 ,
又 為三角形內(nèi)角,
所以 . ………………………5分
(Ⅱ)解:因?yàn)?sub>.
故 ,
由已知 得
又因?yàn)?nbsp; .
得 ,
所以 ,
解得 . ………………………………………………10分
(18)(本小題滿(mǎn)分12分)
(Ⅰ)證明:
∵面,面,
∴.
又∵底面是正方形,
∴.
又∵,
∴面,
又∵面,
∴平面平面. ………………………………………6分
(Ⅱ)解法一:如圖建立空間直角坐標(biāo)系.
設(shè),則,在中,.
∴、、、、、.
∵為的中點(diǎn),,
∴.
設(shè)是平面的一個(gè)法向量.
則由 可求得.
由(Ⅰ)知是平面的一個(gè)法向量,
且,
∴,即.
∴二面角的大小為. ………………………………………12分
解法二:
設(shè),則,
在中,.
設(shè),連接,過(guò)作于,
連結(jié),由(Ⅰ)知面.
∴在面上的射影為,
∴.
故為二面角的平面角.
在中,,,.
∴,
∴.
∴.
即二面角的大小為. …………………………………12分
(19)(本小題滿(mǎn)分12分)
解:(Ⅰ)設(shè)取到的4個(gè)球全是白球的概率,
則. …………………………………6分
(Ⅱ)設(shè)取到的4個(gè)球中紅球個(gè)數(shù)不少于白球個(gè)數(shù)的概率,
則. ………………12分
(20)(本小題滿(mǎn)分12分)
解:(I)設(shè)等比數(shù)列的首項(xiàng)為,公比為,
依題意,有,
代入, 得.
∴. …………………………………2分
∴解之得或 …………………6分
∴或. …………………………………8分
(II)又單調(diào)遞減,∴. …………………………………9分
則. …………………………………10分
∴,即,,
.
故使成立的正整數(shù)n的最小值為8.………………………12分
(21)(本小題滿(mǎn)分12分)
(Ⅰ)解:設(shè)雙曲線(xiàn)方程為,,
由,及勾股定理得,
由雙曲線(xiàn)定義得 .
則. ………………………………………5分
(Ⅱ),,雙曲線(xiàn)的兩漸近線(xiàn)方程為.
由題意,設(shè)的方程為,與軸的交點(diǎn)為.
若與交于點(diǎn),與交于點(diǎn),
由得;由得,
,
,
則,
故雙曲線(xiàn)方程為. ………………………………12分
(22)(本小題滿(mǎn)分12分)
解:(Ⅰ),
.
又因?yàn)楹瘮?shù)在上為增函數(shù),
在上恒成立,等價(jià)于
在上恒成立.
又,
故當(dāng)且僅當(dāng)時(shí)取等號(hào),而,
的最小值為. ………………………………………6分
(Ⅱ)由已知得:函數(shù)為奇函數(shù),
, , ………………………………7分
.
切點(diǎn)為,其中,
則切線(xiàn)的方程為: ……………………8分
由,
得.
又,
,
,
,
或,由題意知,
從而.
,
,
. ………………………………………12分
本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com