復(fù)雜線段比例式和等積式證明舉例

王仁宏

    義務(wù)教育初中幾何第二冊(cè)對(duì)簡(jiǎn)單的線段比例式和等積式做了一些簡(jiǎn)單介紹。但同學(xué)們解題中還會(huì)遇到一些復(fù)雜的線段比例式和等積式的證明。

    例如

    等,證明這些等式的思想是將它們轉(zhuǎn)化為簡(jiǎn)單的比例式和等積式加以證明,下面舉例說(shuō)明這種證題思路。

 

一. 型等式的證明

    例1. 如圖1所示,在△ABC中,∠A的平分線交BC于P,∠A的外角平分線交BC延長(zhǎng)線于Q,O是PQ之中點(diǎn)。

圖1

    求證:

    證明:因?yàn)锳P平分

   

    又因?yàn)镺是斜邊PQ之中點(diǎn),連AO,得OA=OP。因?yàn)?/p>

   

 

    例2. 如圖2所示,已知△ABC中,DF⊥BC于F。

    求證:

圖2

    證明:

   

   

 

二. 型等式的證明

    例3. 如圖3所示,已知一直線截△ABC的邊AB,AC和BC的延長(zhǎng)線于F、E、D。

    求證:

圖3

    證明:過(guò)點(diǎn)C作CG//FD,交AB于G。

   

 

三. 型等式的證明

    例4. 如圖4所示,已知O是△ABC內(nèi)的一點(diǎn),過(guò)O作EF、QP、GH分別平行于BC、CA、AB。

    求證:

圖4

    分析:求證的是三個(gè)比的和為1,只要求得與這三個(gè)比的分母是同一條線段,并且分子線段的和等于分母線段即可。

    證明:在中,

   

    在△ABC和△GOF中,

   

   

   

   

 

四. 型等式的證明

    例5. 如圖5所示,在銳角△ABC中,高線BE與CF相交于H,

    求證:。

圖5

    分析:求證式中的右端有線段的積,這使我們聯(lián)想到如能創(chuàng)造出相似三角形,則會(huì)有對(duì)應(yīng)線段成比例,就會(huì)出現(xiàn)線段的乘積式,為此添輔助線于D,則出現(xiàn)相似三角形,而求證式中的右端均為相似三角形的邊,故可從相似三角形開始證明。

    證明:過(guò)H作交BC于D。

    則

   

    即         (1)

   

   

 


同步練習(xí)冊(cè)答案