如圖所示光滑管形圓軌道半徑為R(管徑遠(yuǎn)小于R),小球a、b大小相同,質(zhì)量均為m,其直徑略小于管徑,能在管中無摩擦運動.兩球先后以相同速度v通過軌道最低點,且當(dāng)小球a在最低點時,小球b在最高點,以下說法正確的是( 。
分析:要使小球能通過最高點,只要小球的速度大于零即可;而當(dāng)向心力等于重力時,小球?qū)壍罌]有壓力,由向心力公式可求得小球在最高點時速度;再由機械能守恒可求得小球在最低點時的速度,及最低點時所需要的向心力,即可求得最低點與最高點處壓力的差值.
解答:解:A、B、在最高點,當(dāng)小球?qū)壍罒o壓力時,則有:mg=m
v
2
1
R
;
解得:v1=
gR
;
由機械能守恒定律可得,mg?2R=
1
2
mv22-
1
2
mv12;
求得小球在最低點時的速度v2=
5gR
,故最低點速度至少為
5gR
,才能使兩球在管內(nèi)做圓周運動;當(dāng)速度為
5gR
時,小球在最高點對軌道無壓力;
在最高點無壓力時,向心力F1=mg;
最低點時,向心力F2=m
v
2
2
R
=5mg;即a球比b球所需向心力大4mg;故A錯誤,故B正確;
C、當(dāng)v=
gR
時,兩球均不能到達最高點,根據(jù)動能定理,有:mgh=
1
2
mv2

又v=
gR

故h=0.5R,故C正確;
D、在最高點時,T1+mg=m
v
2
1
R
;解得T1=m
v
2
1
R
-mg; 
最低點時,T2-mg=m
v
2
2
R
;解得T2=m
v
2
2
R
+mg;
T2-T1=2mg+m
v
2
2
R
-m
v
2
1
R
;
由機械能守恒可得:mg?2R=
1
2
mv22-
1
2
mv12;
可得:m
v
2
2
R
-m
v
2
1
R
=4mg;
則可得:T2-T1=6mg;即只要能做完整的圓周運動,壓力之差都等于6mg;故D正確;
故選BCD.
點評:小球在豎直面內(nèi)的圓周運動,若是用繩拴著只有重力小于等于向心力時,小球才能通過;而用桿或在管內(nèi)運動的小球,只要速度大于零,小球即可通過最高點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:

如圖所示光滑管形圓軌道半徑為R(管徑遠(yuǎn)小于R),小球a、b大小相同,質(zhì)量相同,均為m,其直徑略小于管徑,能在管中無摩擦運動.兩球先后以相同速度v通過軌道最低點,且當(dāng)小球a在最低點時,小球b在最高點,以下說法正確的是( 。

查看答案和解析>>

科目:高中物理 來源: 題型:

如圖所示光滑管形圓軌道半徑為R(管徑遠(yuǎn)小 于R),小球a、b大小相同,質(zhì)量均為m,其直徑略小于管徑,能在管中無摩擦運動.兩球先后以相同速度v通過軌道最低點,且當(dāng)小球a在最低點時,小球b在最高點,以下說法正確的是( 。

查看答案和解析>>

科目:高中物理 來源: 題型:

如圖所示光滑管形圓軌道半徑為R(管徑遠(yuǎn)小于R),小球a、b大小相同,質(zhì)量均為m,其直徑略小于管徑,能在管中無摩擦運動.兩球先后以相同速度v通過軌道最低點,且當(dāng)小球a在最低點時,小球b在最高點,以下說法正確的是(  )

查看答案和解析>>

科目:高中物理 來源: 題型:

如圖所示光滑管形圓軌道半徑為R(管徑遠(yuǎn)小于R)固定,小球a、b大小相同,質(zhì)量相同,均為m,其直徑略小于管徑,能在管中無摩擦運動.兩球先后以相同速度v通過軌道最低點,且當(dāng)小球a在最低點時,小球b在最高點,以下說法正確的是(  )

查看答案和解析>>

同步練習(xí)冊答案