【題目】若二次函數(shù)滿足.且
(1)求的解析式;
(2)若在區(qū)間[-1,1]上不等式恒成立,求實數(shù)m的取值范圍.
【答案】(1);(2)
【解析】
(1)利用待定系數(shù)法求解.由二次函數(shù)可設f(x)=ax2+bx+c,由f(0)=1得c值,由f(x+1)﹣f(x)=2x可得a,b的值,從而問題解決;
(2)欲使在區(qū)間[﹣1,1]上不等式f(x)>2x+m恒成立,只須x2﹣3x+1﹣m>0,也就是要x2﹣3x+1﹣m的最小值大于0即可,最后求出x2﹣3x+1﹣m的最小值后大于0解之即得.
(1)設二次函數(shù),
則
又
即
解得
(2)不等式化為
在區(qū)間[-1,1]上不等式恒成立
在區(qū)間[-1,1]上不等式恒成立
只需在區(qū)間[-1,1]上,函數(shù)是減函數(shù)
所以.
科目:高中數(shù)學 來源: 題型:
【題目】[選修4―4:坐標系與參數(shù)方程]
在直角坐標系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為.
(1)若a=1,求C與l的交點坐標;
(2)若C上的點到l的距離的最大值為,求a.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知有6名男醫(yī)生,4名女醫(yī)生.
(1)選3名男醫(yī)生,2名女醫(yī)生,讓這5名醫(yī)生到5個不同地區(qū)去巡回醫(yī)療,一個地區(qū)去一名教師,共有多少種分派方法?
(2)把10名醫(yī)生分成兩組,每組5人且每組都要有女醫(yī)生,共有多少種不同的分法?若將這兩組醫(yī)生分派到兩地去,又有多少種分派方法?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調查,下面是根據(jù)調查結果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:
將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此資料你是否認為“體育迷”與性別有關?
非體育迷 | 體育迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(2)將上述調查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X,若每次抽取的結果是相互獨立的,求X的分布列,期望E(X)和方差D(X)
P( K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4﹣5:不等式選講
已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集為{x|﹣2≤x≤1}.
(1)求a的值;
(2)若 恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】樣本(x1 , x2…,xn)的平均數(shù)為x,樣本(y1 , y2 , …,ym)的平均數(shù)為 ( ≠ ).若樣本(x1 , x2…,xn , y1 , y2 , …,ym)的平均數(shù) =α +(1﹣α) ,其中0<α< ,則n,m的大小關系為( )
A.n<m
B.n>m
C.n=m
D.不能確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn=﹣ n2+kn(其中k∈N+),且Sn的最大值為8.
(1)確定常數(shù)k,求an;
(2)求數(shù)列 的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(﹣1,0),B(1,0),C(0,1),直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,則b的取值范圍是( 。
A.(0,1)B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com