如圖,主動輪O1上兩輪的半徑分別為3r和r,從動輪O2的半徑為2r,A、B、C分別為輪緣上的三點,設(shè)皮帶不打滑,求A、B、C三點的角速度和線速度之比: =         .
=           .
2:2:1 3:1:1 .
考點:
專題:勻速圓周運動專題.
分析:靠傳送帶傳動的點,線速度大小相等,共軸的點,角速度相等.B點和C點具有相同的線速度,A點和B點具有相同的角速度.根據(jù)v=rω,求出三點的角速度之比,線速度之比.
解答:解:B點和C點具有相同的線速度,根據(jù)ω=,知B、C兩點的角速度之比等于半徑之反比,所以ωB:ωC=rc:rb=2:1.而A點和B點具有相同的角速度,所以ωA:ωB:ωC=2:2:1..
根據(jù)v=rω,知A、B的線速度之比等于半徑之比,所以vA:vB:=3:1.B、C線速度相等,所以vA:vB:vC=3:1:1.
故本題答案為:2:2:1,3:1:1.
點評:解決本題的關(guān)鍵掌握靠傳送帶傳動的點,線速度大小相等,共軸的點,角速度相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中物理 來源:不詳 題型:單選題

在勻速圓周運動中,下列物理量不變的是:
A.向心加速度B.線速度
C.向心力D.角速度

查看答案和解析>>

科目:高中物理 來源:不詳 題型:填空題

A、B兩質(zhì)點分別做勻速圓周運動,若在相同時間內(nèi)它們通過的弧長之比,半徑轉(zhuǎn)過的角度之比,則它們的線速度之比=     ,周期之比      ,半徑之比           。

查看答案和解析>>

科目:高中物理 來源:不詳 題型:單選題

甲、乙兩質(zhì)點作勻速圓周運動,其半徑之比R1∶R2=3∶4,角速度之比
ω1∶ω2=4∶3,則甲、乙兩質(zhì)點的向心加速度之比a1∶a2是(   )
A.3/4B.4/3C.9/16D.16/9

查看答案和解析>>

科目:高中物理 來源:不詳 題型:計算題

2009年花樣滑冰世錦賽雙人滑比賽中,張丹、張昊連續(xù)第二年獲得亞軍,如圖所示.張昊(男)以自己為轉(zhuǎn)軸拉著張丹(女)做勻速圓周運動,轉(zhuǎn)速為30 r/min.張丹的腳到轉(zhuǎn)軸的距離為1.6 m.求:

(1)張丹做勻速圓周運動的角速度; 
(2)張丹的腳運動速度的大小.

查看答案和解析>>

科目:高中物理 來源:不詳 題型:單選題

甲、乙兩小球質(zhì)量相同,在同一光滑圓錐形漏斗內(nèi)壁做勻速圓周運動,乙球的軌道半徑較大,如圖所示,則下列說法正確的是(    )
A.甲的線速度較大
B.甲的周期較小
C.它們的向心加速度大小相等
D.它們對漏斗內(nèi)壁的壓力大小相等

查看答案和解析>>

科目:高中物理 來源:不詳 題型:單選題

兩顆人造衛(wèi)星繞地球做圓周運動,周期之比,則軌道半徑之比和運動速率之比分別為()
A.
B.
C.,
D.

查看答案和解析>>

科目:高中物理 來源:不詳 題型:計算題

(12分)如圖所示,長為R的不可伸長輕繩上端固定在O點,下端連接一只小球,小球與地面間的距離可以忽略(但小球不受地面支持力)且處于靜止?fàn)顟B(tài).現(xiàn)給小球一沿水平方向的初速度,使其開始在豎直平面內(nèi)做圓周運動。設(shè)小球到達最高點時輕繩突然斷開,已知最后小球落在距始位置水平距離為4R的地面上,重力加速度為g.試求:(圖中所標(biāo)初速度v0的數(shù)值未知)

(1)繩突然斷開時小球的速度;
(2)小球剛開始運動時對繩的拉力.

查看答案和解析>>

科目:高中物理 來源:不詳 題型:單選題

一個皮帶傳動裝置(皮帶不打滑)如圖所示,皮帶輪邊緣上的A、B兩點到各自轉(zhuǎn)軸的距離分別為,.設(shè)AB兩點的角速度大小分別為、,線速度的大小分別為、.則下列關(guān)系正確的是
A.

A

B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案