如圖所示,固定斜面的傾角θ=30°,物體A與斜面之間的動摩擦因數(shù)為μ=
3
4
,輕彈簧下端固定在斜面底端,彈簧處于原長時上端位于C點,用一根不可伸長的輕繩通過輕質(zhì)光滑的定滑輪連接物體A和B,滑輪右側(cè)繩子與斜面平行,A的質(zhì)量為2m,B的質(zhì)量為m,初始時物體A到C點的距離為L,現(xiàn)給A、B一初速度v0=
gL
,使A開始沿斜面向下運動,B向上運動,物體A將彈簧壓縮到最短后又恰好能彈到C點,已知重力加速度為g,不計空氣阻力,整個過程中,輕繩始終處于伸直狀態(tài)且B不會碰到滑輪,求此過程中;
(1)物體A向下運動剛到C點時的速度;
(2)彈簧最大壓縮量;
(3)彈簧被壓縮時的最大彈性勢能.
分析:(1)A、B系統(tǒng)動能的減小量與系統(tǒng)重力勢能的減小量等于摩擦產(chǎn)生的熱量,根據(jù)能量守恒定律求出物體A向下運動剛到C點時的速度.
(2)對物體A接觸彈簧將彈簧壓縮到最短后又恰回到C點研究,對系統(tǒng)運用動能定理求出彈簧的最大壓縮量.
(3)對彈簧從壓縮到最短到恰好能彈到C點的過程中,運用能量守恒定律求出彈簧壓縮時最大的彈性勢能.
解答:解:(1)A和斜面間的滑動摩擦力f=2μmgcosθ.物體從A向下運動到C點的過程中,根據(jù)能量關(guān)系有:
2mgLsinθ+
1
2
?3mv02
=
1
2
?3mv2+mgL+fL

解得v=
v02-
2
3
μgL
3
=
1
2
gL

(2)從物體A接觸彈簧將彈簧壓縮到最短后又恰回到C點,對系統(tǒng)應(yīng)用動能定理.
f?2x=0-
1
2
×3mv2

x=
3
v02
4μg
-
L
2
=
1
2
L

(3)彈簧從壓縮到最短到恰好能彈到C點的過程中,對系統(tǒng)根據(jù)能量關(guān)系有:Ep+mgx=2mgxsinθ+fx
因為mgx=2mgxsinθ.
所以EP=fx=
3
8
mgL

答:(1)物體A向下運動剛到C點時的速度為
gL
2

(2)彈簧最大壓縮量為
L
2

(3)彈簧被壓縮時的最大彈性勢能為
3
8
mgL
點評:本題綜合考查了動能定理、能量守恒定律,綜合性較強(qiáng),對學(xué)生的要求較高,要加強(qiáng)這類題型的訓(xùn)練.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:

如圖所示,固定斜面的傾角為30°,現(xiàn)用平行于斜面的力F拉著質(zhì)量為m的物體沿斜面向上運動,物體的加速度大小為a,若該物體放在斜面上沿斜面下滑時的加速度大小也為a,則力F的大小是(  )

查看答案和解析>>

科目:高中物理 來源: 題型:

如圖所示,固定在水平地面的傾角為θ斜面上,有一個豎直的擋板,質(zhì)量為m的光滑圓柱處于靜止?fàn)顟B(tài).求:
(1)圓柱對豎直擋板的壓力
(2)計算將擋板撤去后,圓柱在斜面上運動的加速度大。

查看答案和解析>>

科目:高中物理 來源: 題型:

精英家教網(wǎng)如圖所示,固定斜面的傾角為θ=37°,物體與斜面間的動摩擦因數(shù)為μ=0.25,物體受到平行于斜面的力F作用靜止開始運動,力F隨時間t變化規(guī)律如圖(以平行于斜面向上為正方向),前4s內(nèi)物體運動的最大加速度大小為
 
m/s2,前4s內(nèi)物體的位移大小為
 
m.

查看答案和解析>>

科目:高中物理 來源:2013屆安徽省高二文理科分科考試物理試卷(解析版) 題型:選擇題

如圖所示,固定斜面的傾角為30°,現(xiàn)用平行于斜面的力F拉著質(zhì)量為m的物體沿斜面向上運動,物體的加速度大小為a,若該物體放在斜面上沿斜面下滑時的加速度大小也為a,則力F的大小是(  )

A.mg       B.mg         C.mg       D.mg

 

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

如圖所示,固定在水平地面的傾角為θ斜面上,有一個豎直的擋板,質(zhì)量為m的光滑圓柱處于靜止?fàn)顟B(tài).求:
(1)圓柱對豎直擋板的壓力
(2)計算將擋板撤去后,圓柱在斜面上運動的加速度大。

查看答案和解析>>

同步練習(xí)冊答案