4.某同學(xué)在做“研究平拋運(yùn)動(dòng)”的實(shí)驗(yàn)中,忘記記下小球拋出點(diǎn)的位置O.如圖所示,A為小球運(yùn)動(dòng)一段時(shí)間后的位置.取g=10m/s2,根據(jù)圖象,可知小球的初速度為3m/s;小球拋出點(diǎn)A的位置坐標(biāo)為(-30,-5).

分析 (1)平拋運(yùn)動(dòng)在水平方向上做勻速直線運(yùn)動(dòng),在豎直方向上做自由落體運(yùn)動(dòng),根據(jù)豎直方向上相等時(shí)間內(nèi)的位移之差是一恒量求出相等的時(shí)間間隔,結(jié)合水平位移求出初速度.
(2)根據(jù)豎直方向上某段時(shí)間內(nèi)的平均速度等于中間時(shí)刻的瞬時(shí)速度求出B點(diǎn)豎直分速度,結(jié)合速度時(shí)間公式求出拋出點(diǎn)到B點(diǎn)的時(shí)間,從而得出B點(diǎn)距離拋出點(diǎn)的水平位移和豎直位移,得出拋出點(diǎn)的位置坐標(biāo).

解答 解:(1)根據(jù)yBC-yAB=gT2得:T=$\sqrt{\frac{0.25-0.15}{10}}$s=0.1s,
則小球平拋運(yùn)動(dòng)的初速度為:v0=$\frac{x}{T}$=$\frac{0.3}{0.1}$m/s=3m/s.
(2)B點(diǎn)的豎直分速度為:vyB=$\frac{{y}_{AC}}{2T}$=$\frac{0.4}{0.2}$m/s=2m/s
根據(jù)vyB=gt知,t=$\frac{{v}_{yB}}{g}$=$\frac{2}{10}$s=0.2s.
則拋出點(diǎn)與B點(diǎn)的豎直位移為:yB=$\frac{1}{2}$gt2=$\frac{1}{2}$×10×0.04m=0.2m=20cm,
水平位移為:xB=v0t=3×0.2m=0.6m=60cm.
則拋出點(diǎn)的位置坐標(biāo)為x=30-60=-30cm,y=15-20=-5cm.
故答案為:(1)3;(2)(-30,-5).

點(diǎn)評(píng) 解決本題的關(guān)鍵知道平拋運(yùn)動(dòng)在水平方向和豎直方向上的運(yùn)動(dòng)規(guī)律,結(jié)合運(yùn)動(dòng)學(xué)公式和推論靈活求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:選擇題

14.如圖,質(zhì)量均為m的滑塊A和長木板B,B放在傾角為θ的固定斜面上,A放在B的上端,它們均處于靜止?fàn)顟B(tài),若A與B之間、B與斜面之間的動(dòng)摩擦因數(shù)均為μ,且μ>tanθ,斜面和木板均足夠長,同時(shí)給A、B沿斜面向下的速度,且A的速度v1大于B的速度v2,下列描述A、B的速度隨時(shí)間變化的圖象正確的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中物理 來源: 題型:實(shí)驗(yàn)題

15.用如圖所示的裝置來探究小球做圓周運(yùn)動(dòng)所需向心力的大小F與質(zhì)量m、角速度ω和半徑r之間的關(guān)系.兩個(gè)變速輪塔通過皮帶連接,轉(zhuǎn)動(dòng)手柄使長槽和短槽分別隨變速輪塔勻速轉(zhuǎn)動(dòng),槽內(nèi)的鋼球就做勻速圓周運(yùn)動(dòng).橫臂的擋板對(duì)鋼球的壓力提供向心力,鋼球?qū)醢宓姆醋饔昧νㄟ^橫臂的杠桿作用使彈簧測力筒下降,從而露出標(biāo)尺,標(biāo)尺上的紅白相間的等分格顯示出兩個(gè)鋼球所受向心力的比值.如圖是探究過程中某次實(shí)驗(yàn)時(shí)裝置的狀態(tài).
(1)在研究向心力的大小F與質(zhì)量m關(guān)系時(shí),要保持A相同.
A.ω和r  B.ω和m  C.m和r  D.m和F
(2)圖中所示是在研究向心力的大小F與C的關(guān)系.
A.質(zhì)量m  B.半徑r  C.角速度ω
(3)若圖中標(biāo)尺上紅白相間的等分格顯示出兩個(gè)小球所受向心力的比值為1:9,與皮帶連接的兩個(gè)變速輪塔的半徑之比為B.
A.1:3  B.3:1  C.1:9  D.9:1
(4)實(shí)驗(yàn)得到的“向心力大小F與質(zhì)量m、角速度ω和半徑r”之間的關(guān)系表達(dá)式:F=mω2r.

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

12.如圖所示,質(zhì)量相同的三顆衛(wèi)星a、b、c繞地球做勻速圓周運(yùn)動(dòng),其中b、c在地球的同步軌道上,a距離地球表面的高度為R,此時(shí)a、b恰好相距最近,已知地球質(zhì)量為M、半徑為R、地球自轉(zhuǎn)的角速度為ω.引力常量為G,則( 。
A.發(fā)射衛(wèi)星b的速度要大于第一宇宙速度小于第二宇宙速度
B.衛(wèi)星a的速度小于衛(wèi)星b的速度
C.衛(wèi)星a和衛(wèi)星b下一次相距最近還需經(jīng)過t=$\frac{2π}{\sqrt{\frac{GM}{8{R}^{3}}}-ω}$
D.若要衛(wèi)星c與衛(wèi)星b實(shí)現(xiàn)對(duì)接,可讓衛(wèi)星c先減速后加速

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

19.如圖所示是某地的摩天輪.假設(shè)摩天輪的半徑為R,每個(gè)轎廂質(zhì)量(包括轎廂內(nèi)的人)相等且為m,尺寸遠(yuǎn)小于摩天輪的半徑,摩天輪以角速度ω勻速轉(zhuǎn)動(dòng).則下列說法正確的是( 。
A.轉(zhuǎn)動(dòng)到豎直面最高點(diǎn)的轎廂處于超重狀態(tài)
B.轉(zhuǎn)動(dòng)到豎直面最低點(diǎn)的轎廂處于超重狀態(tài)
C.部分轎廂所受的合外力小于mRω2
D.所有轎廂所受的合外力都等于mRω2

查看答案和解析>>

科目:高中物理 來源: 題型:實(shí)驗(yàn)題

9.某同學(xué)利用下述裝置對(duì)輕質(zhì)彈簧的彈性勢能進(jìn)行探究:一輕質(zhì)彈簧放置在光滑水平桌面上,彈簧左端固定,右端與一小球接觸而不固連;彈簧處于原長時(shí),小球恰好在桌面邊緣,如圖1所示.向左推小球,使彈簧壓縮一段距離后由靜止釋放,小球離開桌面后落到水平地面.通過測量和計(jì)算,可求得彈簧被壓縮后的彈性勢能.回答下列問題:

(1)本實(shí)驗(yàn)中可認(rèn)為,彈簧被壓縮后的彈性勢能Ep與小球拋出時(shí)的動(dòng)能Ek相等.已知重力加速度大小為g.為求得Ek,至少需要測量下列物理量中的ABC(填正確答案標(biāo)號(hào)).
A.小球的質(zhì)量m;          
B.小球拋出點(diǎn)到落地點(diǎn)的水平距離s
C.桌面到地面的高度h       
D.彈簧的壓縮量△x
E.彈簧原長l0
(2)用所選取的測量量和已知量表示Ek,得Ek=$\frac{mg{s}^{2}}{4h}$.
(3)如圖2中的直線是實(shí)驗(yàn)測量得到的s-△x圖線.從理論上可推出,如果h不變,m減小,s-△x圖線的斜率會(huì)增大(填“增大”、“減小”或“不變”):如果m不變,h減小,s-△x圖線的斜率會(huì)減。ㄌ睢霸龃蟆薄ⅰ皽p小”或“不變”).(可能用到的,彈簧的彈性勢能:Ep=$\frac{1}{2}$k△x2

查看答案和解析>>

科目:高中物理 來源: 題型:填空題

16.一物體在水平面內(nèi)沿半徑0.2m的圓形軌道做勻速圓周運(yùn)動(dòng),線速度為0.4m/s,那么,它的轉(zhuǎn)速為$\frac{1}{π}$r/s; 它的向心加速度為0.8 m/s2

查看答案和解析>>

科目:高中物理 來源: 題型:計(jì)算題

13.如圖所示,光滑水平面上有一質(zhì)量為m=1kg的小車,小車右端固定一水平輕質(zhì)彈簧,彈簧左端連接一質(zhì)量為m0=1kg的物塊,物塊與上表面光滑的小車一起以v0=5m/s的速度向右勻速運(yùn)動(dòng),與靜止在光滑水平面上、質(zhì)量為M=4kg的小球發(fā)生彈性正碰,若碰撞時(shí)間極短,彈簧始終在彈性限度內(nèi).求:
(Ⅰ)碰撞結(jié)束時(shí),小車與小球的速度;
(Ⅱ)從碰后瞬間到彈簧最短的過程,彈簧彈力對(duì)小車的沖量大小.

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

19.如圖所示,兩質(zhì)量相同的小球A、B,分別用細(xì)線懸掛于等高的兩點(diǎn),A球的懸線比B球的長,把兩球均拉到懸線水平后將小球由靜止釋放,以懸點(diǎn)所在平面為參考平面,則兩球經(jīng)最低點(diǎn)時(shí)(  )
A.A球的速率等于B球的速率
B.A球的機(jī)械能等于B球的機(jī)械能
C.A球的動(dòng)能等于B球的動(dòng)能
D.A球的對(duì)繩的拉力大于B球?qū)K的拉力

查看答案和解析>>

同步練習(xí)冊(cè)答案