如圖6-2所示,一質(zhì)量為m的物體系于長(zhǎng)度分別為l1、l2的兩根細(xì)線上,l1的一端懸掛在天花板上,與豎直方向夾角為θ,l2水平拉直,物體處于平衡狀態(tài).現(xiàn)將l2線剪斷,求剪斷瞬時(shí)物體的加速度.

圖6-2

(1)下面是某同學(xué)對(duì)該題的一種解法:

解:設(shè)l1線上拉力為T1,l2線上拉力為T2,重力為mg,物體在三力作用下保持平衡.

T1cosθ=mg,T1sinθ=T2

T2=mgtanθ

    剪斷線的瞬間,T2突然消失,物體即在T2反方向獲得加速度.

    因?yàn)閙gtanθ=ma,所以加速度a=gtanθ,方向與T2反方向,你認(rèn)為這個(gè)結(jié)果正確嗎?請(qǐng)對(duì)該解法作出評(píng)價(jià)并說(shuō)明理由.

(2)若將圖6-2中的細(xì)線l1改為長(zhǎng)度相同、質(zhì)量不計(jì)的輕彈簧,如圖6-3所示,其他條件不變,求解的步驟和結(jié)果與(1)完全相同,即a=gtanθ,你認(rèn)為這個(gè)結(jié)果正確嗎?請(qǐng)說(shuō)明理由.

圖6-3

解析:(1)剪斷l(xiāng)2前,物體在線l1、l2的拉力T1、T2和重力作用下平衡,受力如圖6-4.

圖6-4

    由平衡條件T1cosθ=mg,T1sinθ=T2得T2=mgtanθ

    由于l1是細(xì)線,其物理模型是不可拉伸的剛性繩,當(dāng)線上的張力變化時(shí),細(xì)線的長(zhǎng)度形變量忽略不計(jì),因此當(dāng)剪斷l(xiāng)2的瞬間,T2突然消失,l1線上的張力發(fā)生突變,這時(shí)物體受力如圖6-5,T1=mgcosθ,mgsinθ=ma得a=gsinθ,所以原題給的結(jié)果錯(cuò)誤,原因是線l2上的張力大小發(fā)生了突變.

圖6-5

(2)輕彈簧這一物理模型是當(dāng)受外力拉伸時(shí),有明顯的形變量Δx,在彈性限度內(nèi),彈力大小F=kΔx,彈力方向沿彈簧,當(dāng)剪斷l(xiāng)2的瞬間T2=0,彈簧的形變量未來(lái)得及發(fā)生變化,Δx不變,l1上的張力大小、方向還未發(fā)生變化,所以物體所受的合力與T2等大反向,由牛頓第二定律

mgtanθ=ma得a=gtanθ

    原題給的結(jié)果正確,因l2被剪斷的瞬間,彈簧l1上的彈力T1未發(fā)生變化.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中物理 來(lái)源: 題型:

如圖16-6-2所示,質(zhì)量M為4 kg的平板小車靜止在光滑的水平面上,小車左端放一質(zhì)量為1 kg的木塊,車的右端固定一個(gè)輕質(zhì)彈簧,現(xiàn)給木塊一個(gè)水平向右的10 N·s的瞬間沖量,木塊便沿車向右滑行,在與彈簧相碰后又沿原路返回,并恰好能達(dá)到小車的左端,求:

圖16-6-2

(1)彈簧被壓縮到最短時(shí)平板車的速度v;

(2)木塊返回小車左端時(shí)的動(dòng)能EK;

(3)彈簧獲得的最大彈性勢(shì)能Epm.

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:

如圖6-2-2所示,在水平桌面的邊角處有一輕質(zhì)光滑的定滑輪K,一條不可伸長(zhǎng)的輕繩繞過(guò)K分別與物塊A、B相連,A、B的質(zhì)量分別為ma、mb.開始時(shí)系統(tǒng)處于靜止?fàn)顟B(tài),現(xiàn)用一水平恒力F拉物塊A,使物塊B上升.已知當(dāng)物塊B上升距離為h時(shí),B的速度為v.求此過(guò)程中物塊A克服摩擦力所做的功.重力加速度為g.

圖6-2-2

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:

如圖6-13所示,半徑為R、圓心為O的大圓環(huán)固定在豎直平面內(nèi),兩個(gè)輕質(zhì)小圓環(huán)套在大圓環(huán)上.一根輕質(zhì)長(zhǎng)繩穿過(guò)兩個(gè)小圓環(huán),它的兩端都系上質(zhì)量為m的重物,忽略小圓環(huán)的大小.

圖6-13

(1)將兩個(gè)小圓環(huán)固定在大圓環(huán)豎直對(duì)稱軸的兩側(cè)θ=30°的位置上.在兩個(gè)小圓環(huán)間繩子的中點(diǎn)C處,掛上一個(gè)質(zhì)量M=m的重物,使兩個(gè)小圓環(huán)間的繩子水平,然后無(wú)初速釋放重物M.設(shè)繩子與大、小圓環(huán)間的摩擦均可忽略,求重物M下降的最大距離.

(2)若不掛重物M,小圓環(huán)可以在大圓環(huán)上自由移動(dòng),且繩子與大、小圓環(huán)間及大、小圓環(huán)之間的摩擦均可以忽略,問(wèn)兩個(gè)小圓環(huán)分別在哪些位置時(shí),系統(tǒng)可處于平衡狀態(tài)?

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:

如圖6-13所示,半徑為R、圓心為O的大圓環(huán)固定在豎直平面內(nèi),兩個(gè)輕質(zhì)小圓環(huán)套在大圓環(huán)上.一根輕質(zhì)長(zhǎng)繩穿過(guò)兩個(gè)小圓環(huán),它的兩端都系上質(zhì)量為m的重物,忽略小圓環(huán)的大小.

圖6-13

(1)將兩個(gè)小圓環(huán)固定在大圓環(huán)豎直對(duì)稱軸的兩側(cè)θ=30°的位置上.在兩個(gè)小圓環(huán)間繩子的中點(diǎn)C處,掛上一個(gè)質(zhì)量M=m的重物,使兩個(gè)小圓環(huán)間的繩子水平,然后無(wú)初速釋放重物M.設(shè)繩子與大、小圓環(huán)間的摩擦均可忽略,求重物M下降的最大距離.

(2)若不掛重物M,小圓環(huán)可以在大圓環(huán)上自由移動(dòng),且繩子與大、小圓環(huán)間及大、小圓環(huán)之間的摩擦均可以忽略,問(wèn)兩個(gè)小圓環(huán)分別在哪些位置時(shí),系統(tǒng)可處于平衡狀態(tài)?

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:閱讀理解

第十部分 磁場(chǎng)

第一講 基本知識(shí)介紹

《磁場(chǎng)》部分在奧賽考剛中的考點(diǎn)很少,和高考要求的區(qū)別不是很大,只是在兩處有深化:a、電流的磁場(chǎng)引進(jìn)定量計(jì)算;b、對(duì)帶電粒子在復(fù)合場(chǎng)中的運(yùn)動(dòng)進(jìn)行了更深入的分析。

一、磁場(chǎng)與安培力

1、磁場(chǎng)

a、永磁體、電流磁場(chǎng)→磁現(xiàn)象的電本質(zhì)

b、磁感強(qiáng)度、磁通量

c、穩(wěn)恒電流的磁場(chǎng)

*畢奧-薩伐爾定律(Biot-Savart law):對(duì)于電流強(qiáng)度為I 、長(zhǎng)度為dI的導(dǎo)體元段,在距離為r的點(diǎn)激發(fā)的“元磁感應(yīng)強(qiáng)度”為dB 。矢量式d= k,(d表示導(dǎo)體元段的方向沿電流的方向、為導(dǎo)體元段到考查點(diǎn)的方向矢量);或用大小關(guān)系式dB = k結(jié)合安培定則尋求方向亦可。其中 k = 1.0×10?7N/A2 。應(yīng)用畢薩定律再結(jié)合矢量疊加原理,可以求解任何形狀導(dǎo)線在任何位置激發(fā)的磁感強(qiáng)度。

畢薩定律應(yīng)用在“無(wú)限長(zhǎng)”直導(dǎo)線的結(jié)論:B = 2k 

*畢薩定律應(yīng)用在環(huán)形電流垂直中心軸線上的結(jié)論:B = 2πkI ;

*畢薩定律應(yīng)用在“無(wú)限長(zhǎng)”螺線管內(nèi)部的結(jié)論:B = 2πknI 。其中n為單位長(zhǎng)度螺線管的匝數(shù)。

2、安培力

a、對(duì)直導(dǎo)體,矢量式為 = I;或表達(dá)為大小關(guān)系式 F = BILsinθ再結(jié)合“左手定則”解決方向問(wèn)題(θ為B與L的夾角)。

b、彎曲導(dǎo)體的安培力

⑴整體合力

折線導(dǎo)體所受安培力的合力等于連接始末端連線導(dǎo)體(電流不變)的的安培力。

證明:參照?qǐng)D9-1,令MN段導(dǎo)體的安培力F1與NO段導(dǎo)體的安培力F2的合力為F,則F的大小為

F = 

  = BI

  = BI

關(guān)于F的方向,由于ΔFF2P∽ΔMNO,可以證明圖9-1中的兩個(gè)灰色三角形相似,這也就證明了F是垂直MO的,再由于ΔPMO是等腰三角形(這個(gè)證明很容易),故F在MO上的垂足就是MO的中點(diǎn)了。

證畢。

由于連續(xù)彎曲的導(dǎo)體可以看成是無(wú)窮多元段直線導(dǎo)體的折合,所以,關(guān)于折線導(dǎo)體整體合力的結(jié)論也適用于彎曲導(dǎo)體。(說(shuō)明:這個(gè)結(jié)論只適用于勻強(qiáng)磁場(chǎng)。)

⑵導(dǎo)體的內(nèi)張力

彎曲導(dǎo)體在平衡或加速的情形下,均會(huì)出現(xiàn)內(nèi)張力,具體分析時(shí),可將導(dǎo)體在被考查點(diǎn)切斷,再將被切斷的某一部分隔離,列平衡方程或動(dòng)力學(xué)方程求解。

c、勻強(qiáng)磁場(chǎng)對(duì)線圈的轉(zhuǎn)矩

如圖9-2所示,當(dāng)一個(gè)矩形線圈(線圈面積為S、通以恒定電流I)放入勻強(qiáng)磁場(chǎng)中,且磁場(chǎng)B的方向平行線圈平面時(shí),線圈受安培力將轉(zhuǎn)動(dòng)(并自動(dòng)選擇垂直B的中心軸OO′,因?yàn)橘|(zhì)心無(wú)加速度),此瞬時(shí)的力矩為

M = BIS

幾種情形的討論——

⑴增加匝數(shù)至N ,則 M = NBIS ;

⑵轉(zhuǎn)軸平移,結(jié)論不變(證明從略);

⑶線圈形狀改變,結(jié)論不變(證明從略);

*⑷磁場(chǎng)平行線圈平面相對(duì)原磁場(chǎng)方向旋轉(zhuǎn)α角,則M = BIScosα ,如圖9-3;

證明:當(dāng)α = 90°時(shí),顯然M = 0 ,而磁場(chǎng)是可以分解的,只有垂直轉(zhuǎn)軸的的分量Bcosα才能產(chǎn)生力矩…

⑸磁場(chǎng)B垂直O(jiān)O′軸相對(duì)線圈平面旋轉(zhuǎn)β角,則M = BIScosβ ,如圖9-4。

證明:當(dāng)β = 90°時(shí),顯然M = 0 ,而磁場(chǎng)是可以分解的,只有平行線圈平面的的分量Bcosβ才能產(chǎn)生力矩…

說(shuō)明:在默認(rèn)的情況下,討論線圈的轉(zhuǎn)矩時(shí),認(rèn)為線圈的轉(zhuǎn)軸垂直磁場(chǎng)。如果沒(méi)有人為設(shè)定,而是讓安培力自行選定轉(zhuǎn)軸,這時(shí)的力矩稱為力偶矩。

二、洛侖茲力

1、概念與規(guī)律

a、 = q,或展開為f = qvBsinθ再結(jié)合左、右手定則確定方向(其中θ為的夾角)。安培力是大量帶電粒子所受洛侖茲力的宏觀體現(xiàn)。

b、能量性質(zhì)

由于總垂直確定的平面,故總垂直 ,只能起到改變速度方向的作用。結(jié)論:洛侖茲力可對(duì)帶電粒子形成沖量,卻不可能做功;颍郝鍋銎澚墒箮щ娏W拥膭(dòng)量發(fā)生改變卻不能使其動(dòng)能發(fā)生改變。

問(wèn)題:安培力可以做功,為什么洛侖茲力不能做功?

解說(shuō):應(yīng)該注意“安培力是大量帶電粒子所受洛侖茲力的宏觀體現(xiàn)”這句話的確切含義——“宏觀體現(xiàn)”和“完全相等”是有區(qū)別的。我們可以分兩種情形看這個(gè)問(wèn)題:(1)導(dǎo)體靜止時(shí),所有粒子的洛侖茲力的合力等于安培力(這個(gè)證明從略);(2)導(dǎo)體運(yùn)動(dòng)時(shí),粒子參與的是沿導(dǎo)體棒的運(yùn)動(dòng)v1和導(dǎo)體運(yùn)動(dòng)v2的合運(yùn)動(dòng),其合速度為v ,這時(shí)的洛侖茲力f垂直v而安培力垂直導(dǎo)體棒,它們是不可能相等的,只能說(shuō)安培力是洛侖茲力的分力f1 = qv1B的合力(見(jiàn)圖9-5)。

很顯然,f1的合力(安培力)做正功,而f不做功(或者說(shuō)f1的正功和f2的負(fù)功的代數(shù)和為零)。(事實(shí)上,由于電子定向移動(dòng)速率v1在10?5m/s數(shù)量級(jí),而v2一般都在10?2m/s數(shù)量級(jí)以上,致使f1只是f的一個(gè)極小分量。)

☆如果從能量的角度看這個(gè)問(wèn)題,當(dāng)導(dǎo)體棒放在光滑的導(dǎo)軌上時(shí)(參看圖9-6),導(dǎo)體棒必獲得動(dòng)能,這個(gè)動(dòng)能是怎么轉(zhuǎn)化來(lái)的呢?

若先將導(dǎo)體棒卡住,回路中形成穩(wěn)恒的電流,電流的功轉(zhuǎn)化為回路的焦耳熱。而將導(dǎo)體棒釋放后,導(dǎo)體棒受安培力加速,將形成感應(yīng)電動(dòng)勢(shì)(反電動(dòng)勢(shì))。動(dòng)力學(xué)分析可知,導(dǎo)體棒的最后穩(wěn)定狀態(tài)是勻速運(yùn)動(dòng)(感應(yīng)電動(dòng)勢(shì)等于電源電動(dòng)勢(shì),回路電流為零)。由于達(dá)到穩(wěn)定速度前的回路電流是逐漸減小的,故在相同時(shí)間內(nèi)發(fā)的焦耳熱將比導(dǎo)體棒被卡住時(shí)少。所以,導(dǎo)體棒動(dòng)能的增加是以回路焦耳熱的減少為代價(jià)的。

2、僅受洛侖茲力的帶電粒子運(yùn)動(dòng)

a、時(shí),勻速圓周運(yùn)動(dòng),半徑r =  ,周期T = 

b、成一般夾角θ時(shí),做等螺距螺旋運(yùn)動(dòng),半徑r =  ,螺距d = 

這個(gè)結(jié)論的證明一般是將分解…(過(guò)程從略)。

☆但也有一個(gè)問(wèn)題,如果將分解(成垂直速度分量B2和平行速度分量B1 ,如圖9-7所示),粒子的運(yùn)動(dòng)情形似乎就不一樣了——在垂直B2的平面內(nèi)做圓周運(yùn)動(dòng)?

其實(shí),在圖9-7中,B1平行v只是一種暫時(shí)的現(xiàn)象,一旦受B2的洛侖茲力作用,v改變方向后就不再平行B1了。當(dāng)B1施加了洛侖茲力后,粒子的“圓周運(yùn)動(dòng)”就無(wú)法達(dá)成了。(而在分解v的處理中,這種局面是不會(huì)出現(xiàn)的。)

3、磁聚焦

a、結(jié)構(gòu):見(jiàn)圖9-8,K和G分別為陰極和控制極,A為陽(yáng)極加共軸限制膜片,螺線管提供勻強(qiáng)磁場(chǎng)。

b、原理:由于控制極和共軸膜片的存在,電子進(jìn)磁場(chǎng)的發(fā)散角極小,即速度和磁場(chǎng)的夾角θ極小,各粒子做螺旋運(yùn)動(dòng)時(shí)可以認(rèn)為螺距彼此相等(半徑可以不等),故所有粒子會(huì)“聚焦”在熒光屏上的P點(diǎn)。

4、回旋加速器

a、結(jié)構(gòu)&原理(注意加速時(shí)間應(yīng)忽略)

b、磁場(chǎng)與交變電場(chǎng)頻率的關(guān)系

因回旋周期T和交變電場(chǎng)周期T′必相等,故 =

c、最大速度 vmax = = 2πRf

5、質(zhì)譜儀

速度選擇器&粒子圓周運(yùn)動(dòng),和高考要求相同。

第二講 典型例題解析

一、磁場(chǎng)與安培力的計(jì)算

【例題1】?jī)筛鶡o(wú)限長(zhǎng)的平行直導(dǎo)線a、b相距40cm,通過(guò)電流的大小都是3.0A,方向相反。試求位于兩根導(dǎo)線之間且在兩導(dǎo)線所在平面內(nèi)的、與a導(dǎo)線相距10cm的P點(diǎn)的磁感強(qiáng)度。

【解說(shuō)】這是一個(gè)關(guān)于畢薩定律的簡(jiǎn)單應(yīng)用。解題過(guò)程從略。

【答案】大小為8.0×10?6T ,方向在圖9-9中垂直紙面向外。

【例題2】半徑為R ,通有電流I的圓形線圈,放在磁感強(qiáng)度大小為B 、方向垂直線圈平面的勻強(qiáng)磁場(chǎng)中,求由于安培力而引起的線圈內(nèi)張力。

【解說(shuō)】本題有兩種解法。

方法一:隔離一小段弧,對(duì)應(yīng)圓心角θ ,則弧長(zhǎng)L = θR 。因?yàn)棣?u> →

查看答案和解析>>

同步練習(xí)冊(cè)答案