相關(guān)習(xí)題
 0  30411  30419  30425  30429  30435  30437  30441  30447  30449  30455  30461  30465  30467  30471  30477  30479  30485  30489  30491  30495  30497  30501  30503  30505  30506  30507  30509  30510  30511  30513  30515  30519  30521  30525  30527  30531  30537  30539  30545  30549  30551  30555  30561  30567  30569  30575  30579  30581  30587  30591  30597  30605  266669 

科目: 來源: 題型:

設(shè)a∈{1,2,3},b∈{2,4,6},則函數(shù)y=log 
b
a
1
x
是增函數(shù)的概率為
 

查看答案和解析>>

科目: 來源: 題型:

有5條長度分別為1,3,5,7,9的線段,從中任意取出3條,則所取3條線段可構(gòu)成三角形的概率是
 

查看答案和解析>>

科目: 來源: 題型:

設(shè)x,y是0,1,2,3,4,5中任意兩個(gè)不同的數(shù),那么復(fù)數(shù)x+yi恰好是純虛數(shù)的概率為( 。
A、
1
6
B、
1
3
C、
1
5
D、
1
30

查看答案和解析>>

科目: 來源: 題型:

盒中有10個(gè)鐵釘,其中8個(gè)是合格的,2個(gè)是不合格的,從中任取一個(gè)恰為合格鐵釘?shù)母怕适牵ā 。?/div>
A、
1
5
B、
1
4
C、
4
5
D、
1
10

查看答案和解析>>

科目: 來源: 題型:

甲、乙兩人玩猜數(shù)字游戲,先由甲心中想一個(gè)數(shù)字,記為a,再由乙猜甲剛才所想的數(shù)字,把乙猜的數(shù)字記為b,其中a,b∈{1,2,3,4,5,6},若|a-b|≤1,就稱甲乙“心有靈犀”.現(xiàn)任意找兩人玩這個(gè)游戲,則他們“心有靈犀”的概率為(  )
A、
1
9
B、
2
9
C、
7
18
D、
4
9

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
lnx
x
-x

(Ⅰ)求函數(shù)f(x)的最大值;
(Ⅱ)設(shè)m>0,求f(x)在[m,2m]上的最大值;
(III)試證明:對?n∈N*,不等式ln
1+n
n
1+n
n2
恒成立.

查看答案和解析>>

科目: 來源: 題型:

精英家教網(wǎng)如圖,已知圓G:x2+y2-2x-
2
y=0,經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)F及上頂點(diǎn)B,過圓外一點(diǎn)(m,0)(m>a)傾斜角為
6
的直線l交橢圓于C,D兩點(diǎn),
(1)求橢圓的方程;
(2)若右焦點(diǎn)F在以線段CD為直徑的圓E的內(nèi)部,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an}中,a1=1,an=
2n
n-1
an-1+n(n≥2,n∈N*)
,且bn=
an
n
,{bn}為等比數(shù)列.
(Ⅰ)求實(shí)數(shù)λ及數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若Sn是數(shù)列{an}的前n項(xiàng)和,求Sn

查看答案和解析>>

科目: 來源: 題型:

為了了解高中一年級學(xué)生身高情況,某校按10%的比例對全校700名高中一年級學(xué)生按性別進(jìn)行抽樣檢查,沒得身高頻數(shù)分布表如下表1、表2.
表1:男生身高頻數(shù)分布表
身高(cm) [160,165) [165,170) [170,175) [175,180) [180,185) [185,190)
頻數(shù) 2 5 14 13 4 2
表2:女生身高頻數(shù)分布表
身高(cm) [150,155) [155,160) [160,165) [165,170) [170,175) [175,180)
頻數(shù) 1 7 12 6 3 1
(Ⅰ)求該校男生的人數(shù)并畫出其頻率分布直方圖;
(Ⅱ)估計(jì)該校學(xué)生身高(單位:cm)在[165,180)的概率;
(Ⅲ)在男生樣本中,從身高(單位:cm)在[180,190)的男生中任選3人,設(shè)ξ表示所選3人中身高(單位:cm)在[180,185)的人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
2-x(x≥0)
x-2(x<0)
,滿足x+(x+2)f(x+2)≤2的x取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案