科目: 來源: 題型:
【題目】如圖,扇形AOB是一個觀光區(qū)的平面示意圖,其中圓心角∠AOB為,半徑OA為1 km.為了便于游客觀光休閑,擬在觀光區(qū)內(nèi)鋪設(shè)一條從入口A到出口B的觀光道路,道路由弧AC、線段CD及線段DB組成,其中D在線段OB上,且CD∥AO.設(shè)∠AOC=θ.
(1)用θ表示CD的長度,并寫出θ的取值范圍;
(2)當θ為何值時,觀光道路最長?
查看答案和解析>>
科目: 來源: 題型:
【題目】下列說法正確的是( )
A.若等比數(shù)列的前項和為,則,,也成等比數(shù)列.
B.命題“若為的極值點,則”的逆命題是真命題.
C.“為真命題”是“為真命題”的充分不必要條件.
D.命題“,使得”的否定是:“,”.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)min{m,n}表示m,n二者中較小的一個,已知函數(shù)f(x)=x2+8x+14,g(x)=(x>0),若x1∈[-5,a](a≥-4),x2∈(0,+∞),使得f(x1)=g(x2)成立,則a的最大值為
A.-4B.-3C.-2D.0
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,,若橢圓經(jīng)過點,且△PF1F2的面積為2.
(1)求橢圓的標準方程;
(2)設(shè)斜率為1的直線與以原點為圓心,半徑為的圓交于A,B兩點,與橢圓C交于C,D兩點,且(),當取得最小值時,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式。某機構(gòu)為了調(diào)查人們對此種交通方式的滿意度,從交通擁堵不嚴重的A城市和交通擁堵嚴重的B城市分別隨機調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖如圖:
(1)根據(jù)莖葉圖,比較兩城市滿意度評分的平均值的大小及方差的大。ú灰笥嬎愠鼍唧w值,給出結(jié)論即可);
(2)若得分不低于80分,則認為該用戶對此種交通方式“認可”,否則認為該用戶對此種交通方式“不認可”,請根據(jù)此樣本完成此2×2列聯(lián)表,并據(jù)此樣本分析是否有95%的把握認為城市擁堵與認可共享單車有關(guān);
A | B | 合計 | |
認可 | |||
不認可 | |||
合計 |
(3)在A,B城市對此種交通方式“認可”的用戶中按照分層抽樣的方法抽取6人,若在此6人中推薦2人參加“單車維護”志愿活動,求A城市中至少有1人的概率。
參考數(shù)據(jù)如下:(下面臨界值表供參考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式,其中)
查看答案和解析>>
科目: 來源: 題型:
【題目】等差數(shù)列{an}的前n項和為Sn,且=9,S6=60.
(I)求數(shù)列{an}的通項公式;
(II)若數(shù)列{bn}滿足bn+1﹣bn=(n∈N+)且b1=3,求數(shù)列的前n項和Tn.
查看答案和解析>>
科目: 來源: 題型:
【題目】學校藝術(shù)節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學對這四件參賽作品預測如下:
甲說:“是或作品獲得一等獎”; 乙說:“ 作品獲得一等獎”;
丙說:“ 兩件作品未獲得一等獎”; 丁說:“是作品獲得一等獎”.
評獎揭曉后,發(fā)現(xiàn)這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com