科目: 來源: 題型:
【題目】在①;②;③,這三個條件中任選一個,補(bǔ)充在下面問題中,然后解答補(bǔ)充完整的題目.
在△中,內(nèi)角A,B,C所對的邊分別為.且滿足_________.
(1)求;
(2)已知,△的外接圓半徑為,求△的邊AB上的高.
查看答案和解析>>
科目: 來源: 題型:
【題目】CES是世界上最大的消費電子技術(shù)展,也是全球最大的消費技術(shù)產(chǎn)業(yè)盛會.2020CES消費電子展于2020年1月7日—10日在美國拉斯維加斯舉辦.在這次CES消費電子展上,我國某企業(yè)發(fā)布了全球首款彩色水墨屏閱讀手機(jī),驚艷了全場.若該公司從7名員工中選出3名員工負(fù)責(zé)接待工作(這3名員工的工作視為相同的工作),再選出2名員工分別在上午、下午講解該款手機(jī)性能,若其中甲和乙至多有1人負(fù)責(zé)接待工作,則不同的安排方案共有__________種.
查看答案和解析>>
科目: 來源: 題型:
【題目】在3世紀(jì)中期,我國古代數(shù)學(xué)家劉徽在《九章算術(shù)注》中提出了割圓術(shù):“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓合體,而無所失矣”.這可視為中國古代極限觀念的佳作.割圓術(shù)可以視為將一個圓內(nèi)接正邊形等分成個等腰三角形(如圖所示),當(dāng)變得很大時,等腰三角形的面積之和近似等于圓的面積.運用割圓術(shù)的思想,可得到sin3°的近似值為( )(取近似值3.14)
A.0.012B.0.052
C.0.125D.0.235
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的右焦點為,點在橢圓上,點在圓上,且圓上的所有點均在橢圓外,若的最小值為,且橢圓的長軸長恰與圓的直徑長相等,則下列說法正確的是( )
A.橢圓的焦距為B.橢圓的短軸長為
C.的最小值為D.過點的圓的切線斜率為
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C:的離心率為,且過點A(2,1).
(1)求C的方程:
(2)點M,N在C上,且AM⊥AN,AD⊥MN,D為垂足.證明:存在定點Q,使得|DQ|為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求曲線y=f(x)在點(1,f(1))處的切線與兩坐標(biāo)軸圍成的三角形的面積;
(2)若f(x)≥1,求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐P-ABCD的底面為正方形,PD⊥底面ABCD.設(shè)平面PAD與平面PBC的交線為l.
(1)證明:l⊥平面PDC;
(2)已知PD=AD=1,Q為l上的點,求PB與平面QCD所成角的正弦值的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為加強(qiáng)環(huán)境保護(hù),治理空氣污染,環(huán)境監(jiān)測部門對某市空氣質(zhì)量進(jìn)行調(diào)研,隨機(jī)抽查了天空氣中的和濃度(單位:),得下表:
(1)估計事件“該市一天空氣中濃度不超過,且濃度不超過”的概率;
(2)根據(jù)所給數(shù)據(jù),完成下面的列聯(lián)表:
(3)根據(jù)(2)中的列聯(lián)表,判斷是否有的把握認(rèn)為該市一天空氣中濃度與濃度有關(guān)?
附:,
查看答案和解析>>
科目: 來源: 題型:
【題目】在①,②,③這三個條件中任選一個,補(bǔ)充在下面問題中,若問題中的三角形存在,求的值;若問題中的三角形不存在,說明理由.
問題:是否存在,它的內(nèi)角的對邊分別為,且,,________?
注:如果選擇多個條件分別解答,按第一個解答計分.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學(xué)開展勞動實習(xí),學(xué)生加工制作零件,零件的截面如圖所示.O為圓孔及輪廓圓弧AB所在圓的圓心,A是圓弧AB與直線AG的切點,B是圓弧AB與直線BC的切點,四邊形DEFG為矩形,BC⊥DG,垂足為C,tan∠ODC=,,EF=12 cm,DE=2 cm,A到直線DE和EF的距離均為7 cm,圓孔半徑為1 cm,則圖中陰影部分的面積為________cm2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com