科目: 來源: 題型:
【題目】已知橢圓,三點中恰有二點在橢圓上,且離心率為。
(1)求橢圓的方程;
(2)設為橢圓上任一點, 為橢圓的左右頂點, 為中點,求證:直線與直線它們的斜率之積為定值;
(3)若橢圓的右焦點為,過的直線與橢圓交于,求證:直線與直線斜率之和為定值。
查看答案和解析>>
科目: 來源: 題型:
【題目】下列結論正確的是( )
A.在中,若,則
B.在銳角三角形中,不等式恒成立
C.在中,若,,則為等腰直角三角形
D.在中,若,,三角形面積,則三角形外接圓半徑為
查看答案和解析>>
科目: 來源: 題型:
【題目】下列敘述錯誤的是( )
A.已知直線和平面,若點,點且,,則
B.若三條直線兩兩相交,則三條直線確定一個平面
C.若直線不平行于平面,且,則內(nèi)的所有直線與都不相交
D.若直線和不平行,且,,,則l至少與,中的一條相交
查看答案和解析>>
科目: 來源: 題型:
【題目】在某海濱城市附近海面有一臺風,據(jù)監(jiān)測,當前臺風中心位于城市(如圖)的東偏南方向300千米的海面處,并以20千米/時的速度向西偏北45°方向移動,臺風侵襲的范圍為圓形區(qū)域,當前半徑為60千米,并以10千米/時的速度不斷增大,問幾個小時后該城市開始受到臺風的侵襲?受到臺風的侵襲的時間有多少小時?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線l方程為(m+2)x-(m+1)y-3m-7=0,m∈R.
(Ⅰ)求證:直線l恒過定點P,并求出定點P的坐標;
(Ⅱ)若直線l在x軸,y軸上的截距相等,求直線l的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某自行車手從O點出發(fā),沿折線O﹣A﹣B﹣O勻速騎行,其中點A位于點O南偏東45°且與點O相距20 千米.該車手于上午8點整到達點A,8點20分騎至點C,其中點C位于點O南偏東(45°﹣α)(其中sinα= ,0°<α<90°)且與點O相距5 千米(假設所有路面及觀測點都在同一水平面上).
(1)求該自行車手的騎行速度;
(2)若點O正西方向27.5千米處有個氣象觀測站E,假定以點E為中心的3.5千米范圍內(nèi)有長時間的持續(xù)強降雨.試問:該自行車手會不會進入降雨區(qū),并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正方體ABCD-A1B1C1D1的棱長為a,點E,F,G分別為棱AB,AA1,C1D1的中點.下列結論中,正確結論的序號是______.
①過E,F,G三點作正方體的截面,所得截面為正六邊形;
②B1D1∥平面EFG;
③BD1⊥平面ACB1;
④異面直線EF與BD1所成角的正切值為;
⑤四面體ACB1D1的體積等于a3
查看答案和解析>>
科目: 來源: 題型:
【題目】若直線l1和l2是異面直線,l1α,l2β,α∩β=l,則下列命題正確的是( 。
A. l至少與,中的一條相交B. l與,都相交
C. l至多與,中的一條相交D. l與,都不相交
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著移動互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關的手機軟件層出不窮,現(xiàn)從某市使用和兩款訂餐軟件的商家中分別隨機抽取100個商家,對它們的“平均送達時間”進行統(tǒng)計,得到頻率分布直方圖如下:
(1)使用訂餐軟件的商家中“平均送達時間”不超過30分鐘的商家有多少個?
(2)試估計該市使用款訂餐軟件的商家的“平均送達時間”的眾數(shù)及中位數(shù);
(3)如果以“平均送達時間”的平均數(shù)作為決策依據(jù),從和兩款訂餐軟件中選擇一款訂餐,你會選擇哪款?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com