科目: 來源: 題型:
【題目】已知曲線C:y2=4x,M:(x﹣1)2+y2=4(x≥1),直線l與曲線C相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(Ⅰ)若 ,求證:直線l恒過定點(diǎn),并求出定點(diǎn)坐標(biāo);
(Ⅱ)若直線l與曲線C1相切,M(1,0),求 的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知幾何體ABCDEF中,AB∥CD,AD⊥DC,EA⊥平面ABCD,F(xiàn)C∥EA,AB=AD=EA=1,CD=CF=2.
(Ⅰ)求證:平面EBD⊥平面BCF;
(Ⅱ)求點(diǎn)B到平面ECD的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】2017年3月27日,一則“清華大學(xué)要求從2017級學(xué)生開始,游泳達(dá)到一定標(biāo)準(zhǔn)才能畢業(yè)”的消息在體育界和教育界引起了巨大反響.游泳作為一項(xiàng)重要的求生技能和運(yùn)動(dòng)項(xiàng)目受到很多人的喜愛.其實(shí),已有不少高校將游泳列為必修內(nèi)容.某中學(xué)為了解2017屆高三學(xué)生的性別和喜愛游泳是否有關(guān),對100名高三學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計(jì) | |
男生 | 10 | ||
女生 | 20 | ||
合計(jì) |
已知在這100人中隨機(jī)抽取1人,抽到喜歡游泳的學(xué)生的概率為 .
(Ⅰ)請將上述列聯(lián)表補(bǔ)充完整;
(Ⅱ)判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?
附:
p(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且2Sn=4an﹣1. (Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=anan+1﹣2,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目: 來源: 題型:
【題目】在銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且(c+b)(sinC﹣sinB)=a(sinA﹣sinB).若c=2 ,則a2+b2的取值范圍是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)= ,若f(x)﹣f(﹣x)=0有四個(gè)不同的根,則m的取值范圍是( )
A.(0,2e)
B.(0,e)
C.(0,1)
D.(0, )
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣a|+|2x+2|﹣5(a∈R). (Ⅰ)試比較f(﹣1)與f(a)的大;
(Ⅱ)當(dāng)a≥﹣1時(shí),若函數(shù)f(x)的圖象和x軸圍成一個(gè)三角形,則實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2= ,且直線l經(jīng)過曲線C的左焦點(diǎn)F. ( I )求直線l的普通方程;
(Ⅱ)設(shè)曲線C的內(nèi)接矩形的周長為L,求L的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=2lnx+x2﹣2ax(a>0). (I)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1 , x2(x1<x2),且f(x1)﹣f(x2)≥ ﹣2ln2恒成立,求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點(diǎn)F是拋物線τ:x2=2py (p>0)的焦點(diǎn),點(diǎn)A是拋物線上的定點(diǎn),且 =(2,0),點(diǎn)B,C是拋物線上的動(dòng)點(diǎn),直線AB,AC斜率分別為k1 , k2 .
( I)求拋物線τ的方程;
(Ⅱ)若k1﹣k2=2,點(diǎn)D是點(diǎn)B,C處切線的交點(diǎn),記△BCD的面積為S,證明S為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com