科目: 來源: 題型:
【題目】已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn , 向量 =(Sn , an+1), =(an+1,4)(n∈N*),且 ∥
(1)求{an}的通項公式
(2)設f(n)= bn=f(2n+4),求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知四棱柱ABCD﹣A1B1C1D1的側棱AA1⊥底面ABCD,ABCD是等腰梯形,AB∥DC,AB=2,AD=1,∠ABC=60°,E為A1C的中點
(1)求證:D1E∥平面BB1C1C;
(2)求證:BC⊥A1C;
(3)若A1A=AB,求二面角A1﹣AC﹣B1的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知△ABC的頂點A的坐標為(5,1),AB邊上的中線CM所在直線方程為2x-y-5=0,AC邊上的高BH所在的直線方程為x-2y-5=0.
(Ⅰ)求頂點C的坐標;
(Ⅱ)求直線AB的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分圖象如圖所示,當x=時,y最大值1,當x=時,取得最小值-1
(1)求y=f(x)的解析式;
(2)寫出此函數(shù)取得最大值時自變量x的集合和它的單調遞增區(qū)間.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙、丙三支球隊進行某種比賽,其中兩隊比賽,另一隊當裁判,每局比賽結束時,負方在下一局當裁判.設各局比賽雙方獲勝的概率均為 ,各局比賽結果相互獨立,且沒有平局,根據(jù)抽簽結果第一局甲隊當裁判
(1)求第四局甲隊當裁判的概率;
(2)用X表示前四局中乙隊當裁判的次數(shù),求X的分布列和數(shù)學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,△ABC的三個頂點的坐標分別是A(2,4),B(4,2),C(6,6).
(1)求角A的余弦值;
(2)作AB的底邊上的高CD,D為垂足,求點D的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】某鮮奶店每天以每瓶3元的價格從牧場購進若干瓶鮮牛奶,然后以每瓶7元的價格出售.如果當天賣不完,剩下的鮮牛奶作垃圾處理.
(1)若鮮奶店一天購進30瓶鮮牛奶,求當天的利潤(單位:元)關于當天需求量(單位:瓶,)的函數(shù)解析式;
(2)鮮奶店記錄了100天鮮牛奶的日需求量(單位:瓶),繪制出如下的柱形圖(例如:日需求量為25瓶時,頻數(shù)為5);
(i)若該鮮奶店一天購進30瓶鮮牛奶,求這100天的日利潤(單位:元)的平均數(shù);
(ii) 若該鮮奶店一天購進30瓶鮮牛奶,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天的利潤不少于100元的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司2016年前三個月的利潤(單位:百萬元)如下:
月份 | 1 | 2 | 3 |
利潤 | 2 | 3.9 | 5.5 |
(1)求利潤關于月份的線性回歸方程;
(2)試用(1)中求得的回歸方程預測4月和5月的利潤;
(3)試用(1)中求得的回歸方程預測該公司2016年從幾月份開始利潤超過1000萬?
相關公式:.
【答案】(1);(2)905萬;(3)6月
【解析】試題(1)根據(jù)平均數(shù)和最小二乘法的公式,求解,求出,即可求解回歸方程;(2)把和分別代入,回歸直線方程,即可求解;(3)令,即可求解的值,得出結果.
試題解析:(1),,,
故利潤關于月份的線性回歸方程.
(2)當時,,故可預測月的利潤為萬.
當時,, 故可預測月的利潤為萬.
(3)由得,故公司2016年從月份開始利潤超過萬.
考點:1、線性回歸方程;2、平均數(shù).
【題型】解答題
【結束】
21
【題目】已知定義在上的函數(shù)(),并且它在上的最大值為
(1)求的值;
(2)令,判斷函數(shù)的奇偶性,并求函數(shù)的值域.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,四棱錐,側面是邊長為2的正三角形,且平面平面,底面是菱形,且, 為棱上的動點,且.
(1)求證: ;
(2)試確定的值,使得二面角的余弦值為.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com