相關(guān)習(xí)題
 0  25303  25311  25317  25321  25327  25329  25333  25339  25341  25347  25353  25357  25359  25363  25369  25371  25377  25381  25383  25387  25389  25393  25395  25397  25398  25399  25401  25402  25403  25405  25407  25411  25413  25417  25419  25423  25429  25431  25437  25441  25443  25447  25453  25459  25461  25467  25471  25473  25479  25483  25489  25497  266669 

科目: 來源:同步題 題型:單選題

若有一個回歸直線方程為=2-1.5x,則變量x每增加1個單位長度時,變量y
[     ]
A.平均增加1.5個單位長度
B.平均增加2個單位長度
C.平均減少1.5個單位長度
D.平均減少2個單位長度

查看答案和解析>>

科目: 來源:同步題 題型:單選題

兩個相關(guān)變量滿足如下關(guān)系:
x
10
15
20
25
30
y
1003
1005
1010
1011
1014
兩變量的回歸直線方程為
[     ]
A、=0.56x+997.4
B、=0.63x-231.2
C、=50.2x+501.4
D、=60.4x+400.7

查看答案和解析>>

科目: 來源:同步題 題型:填空題

正常情況下,年齡在18歲到38歲的人,體重y(kg)對身高x(cm)的回歸方程為=0.72x-58.2,張紅同學(xué)(20歲)身高178cm,她的體重應(yīng)該在(    )kg左右。

查看答案和解析>>

科目: 來源:同步題 題型:填空題

某醫(yī)院用光電比色汁檢驗(yàn)?zāi)蚬瘯r,得尿汞含量(毫克/升)與消化系數(shù)如下表:
由此得回歸直線的斜率是(    )(精確到0.01).

查看答案和解析>>

科目: 來源:同步題 題型:填空題

下列說法:①回歸方程適用于一切樣本和總體;②回歸方程一般都有局限性;③樣本取值的范圍會影響回歸方程的適用范圍;④回歸方程得到的預(yù)測值是預(yù)測變量的精確值;正確的是(    )(將你認(rèn)為正確的序號都填上).

查看答案和解析>>

科目: 來源:同步題 題型:填空題

2010年的一項(xiàng)關(guān)于16艘輪船的研究中,船的噸位區(qū)間從192~3246t,船員的數(shù)目從5人到32人,由船員人數(shù)關(guān)于噸位的回歸分析得到如下結(jié)果:船員人數(shù)=9.5+0.0062x(x:輪船噸位).假定兩艘輪船噸位相差1000t,船員平均人數(shù)相差(    )人,對于最小的船估計的船員數(shù)是(    ),對于最大的船估計的船員數(shù)是(    )。

查看答案和解析>>

科目: 來源:同步題 題型:解答題

以下是在某地搜集到的不同樓盤新房屋的銷售價格y(單位:萬元)和房屋面積x(單位:m2)的數(shù)據(jù):
房屋面積x(m2)
115
110
80
135
105
銷售價格y(萬元)
24.8
21.6
19.4
29.2
22
(1)畫出數(shù)據(jù)對應(yīng)的散點(diǎn)圖;
(2)判斷新房屋的銷售價格和房屋面積之間是否具有相關(guān)關(guān)系?如果有相關(guān)關(guān)系,是正相關(guān)還是負(fù)相關(guān)?

查看答案和解析>>

科目: 來源:同步題 題型:解答題

某5名學(xué)生總成績和數(shù)學(xué)成績(單位:分)如下表所示:
學(xué)生
A
B
C
D
E
總成績(x)
482
383
421
364
362
數(shù)學(xué)成績(y)
78
65
71
64
61
(1)作出散點(diǎn)圖;
(2)求數(shù)學(xué)成績y對總成績z的回歸方程;
(3)如果一個學(xué)生的總成績?yōu)?50分,試預(yù)測這個學(xué)生的數(shù)學(xué)成績.

查看答案和解析>>

科目: 來源:同步題 題型:解答題

假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬元),有如下的統(tǒng)計資料:
使用年限x
2
3
4
5
6
維修費(fèi)用y
2.2
3.8
5.5
6.5
7.0
由資料可知y與x具有相關(guān)關(guān)系,
(1)求線性回歸方程的回歸系數(shù);
(2)估計使用年限為10年時維修費(fèi)用是多少.

查看答案和解析>>

科目: 來源:同步題 題型:解答題

某市2001~2010年的煤氣消耗量y與使用煤氣戶數(shù)x的歷史資料如下:
年份
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
x(萬戶)
1
1.2
1.6
1.8
2
2.5
3.2
4
4.2
4.5
y(百萬立方米)
6
7
9.8
12
12.1
14.5
20
24
25.4
27.5
(1)檢驗(yàn)兩者是否線性相關(guān);
(2)若兩者線性相關(guān).求回歸直線方程;
(3)若市政府下一步再擴(kuò)大5000個煤氣用戶,試預(yù)測該市的煤氣消耗量。

查看答案和解析>>

同步練習(xí)冊答案