相關習題
 0  236780  236788  236794  236798  236804  236806  236810  236816  236818  236824  236830  236834  236836  236840  236846  236848  236854  236858  236860  236864  236866  236870  236872  236874  236875  236876  236878  236879  236880  236882  236884  236888  236890  236894  236896  236900  236906  236908  236914  236918  236920  236924  236930  236936  236938  236944  236948  236950  236956  236960  236966  236974  266669 

科目: 來源: 題型:解答題

18.已知首項為1的正項數(shù)列{an}滿足ak+1=ak+ai(i≤k,k=1,2,…,n-1),數(shù)列{an}的前n項和為Sn
(1)比較ai與1的大小關系,并說明理由;
(2)若數(shù)列{an}是等比數(shù)列,求$\frac{S_6}{a_3}$的值;
(3)求證:$\frac{1}{2}n({n+1})≤{S_n}≤{2^n}-1$.

查看答案和解析>>

科目: 來源: 題型:填空題

17.已知隨機變量ξ的分布列為(如表所示):設η=2ξ+1,則η的數(shù)學期望Eη的值是$\frac{2}{3}$.
ξ-101
P$\frac{1}{2}$$\frac{1}{6}$$\frac{1}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知函數(shù)f(x)=-x5-3x3-5x+3,若f(a)+f(a-2)>6,則實數(shù)a的取值范圍是( 。
A.(-∞,3)B.(3,+∞)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

科目: 來源: 題型:選擇題

15.設函數(shù)f(x)=ax+bx+cx,其中c>a>0,c>b>0,若a,b,c是△ABC的三條邊長,則下列結(jié)論正確的是( 。
①對任意x∈(-∞,1),都有f(x)<0;
②存在x∈R,使ax,bx,cx不能構成一個三角形的三條邊長;
③若△ABC為鈍角三角形,存在x∈(1,2),使f(x)=0.
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知實數(shù)x,y滿足$\left\{{\begin{array}{l}{x+y≥4}\\{x-y≤2}\\{3y-x≤4}\end{array}}\right.$,則$\frac{y}{x}$的最小值為(  )
A.1B.$\frac{1}{3}$C.$\frac{3}{5}$D.$\frac{1}{4}$

查看答案和解析>>

科目: 來源: 題型:選擇題

13.為大力提倡“厲行節(jié)約,反對浪費”,某市通過隨機詢問100名性別不同的居民是否做到“光盤”行動,得到如下列聯(lián)表及附表:
經(jīng)計算:${X^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}≈3.03$
做不到“光盤”行動做到“光盤”行動
4510
3015
P(X2≥x00.100.050.025
x02.7063.8415.024
參照附表,得到的正確結(jié)論是( 。
A.在犯錯誤的概率不超過1%的前提下,認為“該市民能否做到‘光盤’行動與性別有關”
B.在犯錯誤的概率不超過1%的前提下,認為“該市民能否做到‘光盤’行動與性別無關”
C.有90%以上的把握認為“該市民能否做到‘光盤’行動與性別有關”
D.有90%以上的把握認為“該市民能否做到‘光盤’行動與性別無關”

查看答案和解析>>

科目: 來源: 題型:選擇題

12.已知隨機變量ξ服從二項分布$ξ~B({6,\frac{1}{3}})$,即P(ξ=2)等于( 。
A.$\frac{3}{16}$B.$\frac{1}{243}$C.$\frac{13}{243}$D.$\frac{80}{243}$

查看答案和解析>>

科目: 來源: 題型:選擇題

11.數(shù)列1,3,6,10,…的通項公式是(  )
A.${a_n}={n^2}-({n-1})$B.${a_n}={n^2}-1$C.${a_n}=\frac{{n({n+1})}}{2}$D.${a_n}={n^2}+1$

查看答案和解析>>

科目: 來源: 題型:解答題

10.設函數(shù)$f(x)=lnx-ax-\frac{1}{x}-1$.
(1)當a=1時,求曲線f(x)在x=1處的切線方程;
(2)當$a=\frac{3}{4}$時,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)在(2)的條件下,設函數(shù)$g(x)={x^2}-2bx-\frac{5}{12}$,若對于?x1∈[1,2],?x2∈[0,1],使f(x1)≥g(x2)成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=sinxcosx+2,x∈R.
(1)求函數(shù)f(x)的最大值和最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習冊答案