相關(guān)習(xí)題
 0  236525  236533  236539  236543  236549  236551  236555  236561  236563  236569  236575  236579  236581  236585  236591  236593  236599  236603  236605  236609  236611  236615  236617  236619  236620  236621  236623  236624  236625  236627  236629  236633  236635  236639  236641  236645  236651  236653  236659  236663  236665  236669  236675  236681  236683  236689  236693  236695  236701  236705  236711  236719  266669 

科目: 來源: 題型:解答題

6.如圖,在直角梯形PBCD中,PB∥DC,DC⊥BC,點A在邊PB上,AD∥BC,PB=3BC=6,現(xiàn)沿AD將△PAD折起,使平面PAD⊥平面ABCD.
(Ⅰ)當CD=BC時,證明:直線BD⊥平面PAC;
(Ⅱ)當三棱錐P-ABD的體積取得最大值時,求平面PBD與平面PCD所成銳二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

5.某商場計劃在今年同時出售智能手機和變頻空調(diào),兩種市場銷售情況很好(有多少就能賣多少)的新產(chǎn)品,
一次該商場要根據(jù)實際情況(如資金、勞動力(工資)等)準備好月資金工藝量,以使每月的總利潤達到最大,通過一個月的市場調(diào)查,得到銷售這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如表:
資金產(chǎn)品所需資金(百元/臺)月資金供應(yīng)量(百元)
手機空調(diào)
成本4030600
勞動力(工資)2558
利潤1110
怎樣確定這兩種產(chǎn)品的月供應(yīng)量,才能使每月的總利潤最大,總利潤的最大值是多少百元?

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知△ABC中的內(nèi)角A,B,C所對的邊長分比為a,b,c,且a=5,cosB=$\frac{4}{5}$.
(Ⅰ)若b=4,求sinA的值;
(Ⅱ)若△ABC的面積為12,求b,c的值.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知等差數(shù)列{an}的前n項和為Sn,且a10=21,S10=120.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$+1,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知命題p:方程$\frac{{y}^{2}}{m}$$+\frac{{x}^{2}}{3}$=1表示的焦點在y軸上的橢圓;命題q:方程$\frac{{x}^{2}}{m+2}$$-\frac{{y}^{2}}{m-4}$=1表示的曲線是雙曲線,若“p∧q”為假命題且“p∨q”為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

1.在平面直角坐標系xoy中,以原點O為極點,x軸的正半軸為極軸建立極坐標系.已知曲線C1的極坐標方程為ρ=4cosθ,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}x=m+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$(t為參數(shù)).
(1)若C1與C2只有一個公共點,求實數(shù)m的值;
(2)若θ=$\frac{π}{3}$與C1交于點A(異于極點),θ=$\frac{5π}{6}({ρ∈R})$與C1交于點B(異于極點),與C2交于點C,若△ABC的面積為3$\sqrt{3}$,求實數(shù)m(m<0)的值.

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$+alnx-bx,a,b為實數(shù).
(1)當b=0時,求函數(shù)f(x)的值域;
(2)當a=b=-1時,若a∈(1,e],求證:對任意s,t∈[1,a]恒有|f(s)-f(t)|<1.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$經(jīng)過點$({1,\frac{{\sqrt{2}}}{2}})$,其離心率為$\frac{{\sqrt{2}}}{2}$.
(1)求橢圓C的方程;
(2)若直線y=x+m與C相交于A,B兩點,∠AOB(O為坐標原點)為鈍角,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

18.如圖1,ABCD為長方形,AB=3,AD=$\sqrt{2}$,E,F(xiàn)分別是邊AB,CD上的點,且AE=CF=1,DE與AF相交于點G,將三角形ADF沿AF折起至ADF',使得D'E=1,如圖2.
(1)求證:平面D'EG⊥ABCF平面;
(2)求平面D'EG與平面所成銳二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

17.在△ABC中,a,b,c分別是A,B,C的對邊,且滿足bsinA+bcosA=c.
(1)求B;
(2)若角A的平分線與BC相交于D點,AD=AC,BD=2,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案