相關(guān)習(xí)題
 0  236190  236198  236204  236208  236214  236216  236220  236226  236228  236234  236240  236244  236246  236250  236256  236258  236264  236268  236270  236274  236276  236280  236282  236284  236285  236286  236288  236289  236290  236292  236294  236298  236300  236304  236306  236310  236316  236318  236324  236328  236330  236334  236340  236346  236348  236354  236358  236360  236366  236370  236376  236384  266669 

科目: 來(lái)源: 題型:解答題

3.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+t}\\{y=3+2t}\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程為ρsin2θ-16cosθ=0,直線l與曲線C交于A,B兩點(diǎn),點(diǎn)P(1,3).求直線l的普通方程和曲線C的直角坐標(biāo)方程.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

2.已知f(x)=log2(x-2),若實(shí)數(shù)m,n滿足f(m)+f(n)=3,則m+n的最小值為( 。
A.5B.7C.4+4$\sqrt{2}$D.9

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

1.在△ABC中,a=2,b=3,$cosC=\frac{1}{3}$,則其外接圓的半徑為( 。
A.$\frac{9\sqrt{2}}{2}$B.$\frac{9\sqrt{2}}{4}$C.$\frac{9\sqrt{2}}{8}$D.9$\sqrt{2}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

20.已知數(shù)列{an}滿足a1a2a3…an=2${\;}^{{n}^{2}}$(n∈N*),且對(duì)任意n∈N*都有$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$<t,則t的取值范圍為( 。
A.($\frac{1}{3}$,+∞)B.[$\frac{1}{3}$,+∞)C.($\frac{2}{3}$,+∞)D.[$\frac{2}{3}$,+∞)

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

19.拋物線y2=-4x的通徑長(zhǎng)等于4.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

18.已知雙曲線${\frac{x}{3}^2}-\frac{y^2}{6}=-1$的焦點(diǎn)分別為F1、F2,點(diǎn)P在雙曲線上.若∠F1PF2=60°,則△F1PF2的面積為(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.$3\sqrt{3}$D.$6\sqrt{3}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

17.命題“a>-5,則a>-8”以及它的逆命題、否命題、逆否命題,真命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

16.已知ab<0,bc<0,則直線ax+by+c=0通過(guò)(  ) 象限.
A.第一、二、三B.第一、二、四C.第一、三、四D.第二、三、四

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

15.將參數(shù)方程$\left\{\begin{array}{l}{x=\frac{1}{2}({e}^{t}+{e}^{-t})cosθ}\\{y=\frac{1}{2}({e}^{t}-{e}^{-t})sinθ}\end{array}\right.$(θ為參數(shù),t為常數(shù))化為普通方程(結(jié)果可保留e).

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

14.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦點(diǎn)為F(2,0),設(shè)A、B為雙曲線上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),AF的中點(diǎn)為M,BF的中點(diǎn)為N,若原點(diǎn)O在以線段MN為直徑的圓上,直線AB的斜率為$\frac{{3\sqrt{7}}}{7}$,則雙曲線的離心率為( 。
A.4B.2C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案