相關(guān)習(xí)題
 0  236018  236026  236032  236036  236042  236044  236048  236054  236056  236062  236068  236072  236074  236078  236084  236086  236092  236096  236098  236102  236104  236108  236110  236112  236113  236114  236116  236117  236118  236120  236122  236126  236128  236132  236134  236138  236144  236146  236152  236156  236158  236162  236168  236174  236176  236182  236186  236188  236194  236198  236204  236212  266669 

科目: 來源: 題型:解答題

4.重慶八中大學(xué)城校區(qū)與本部校區(qū)之間的駕車單程所需時間為T,T只與道路暢通狀況有關(guān),對其容量為500的樣本進行統(tǒng)計,結(jié)果如下:
T(分鐘)25303540
頻數(shù)(次)10015020050
以這500次駕車單程所需時間的頻率代替某人1次駕車單程所需時間的概率.
(1)求T的分布列與P(T<E(T));
(2)某天有3位教師獨自駕車從大學(xué)城校區(qū)返回本部校區(qū),記X表示這3位教師中駕車所用時間少于E(T)的人數(shù),求X的分布列與E(X);
(3)下周某天張老師將駕車從大學(xué)城校區(qū)出發(fā),前往本部校區(qū)做一個50分鐘的講座,結(jié)束后立即返回大學(xué)城校區(qū),求張老師從離開大學(xué)城校區(qū)到返回大學(xué)城校區(qū)共用時間不超過120分鐘的概率.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知α,β,γ是三個不同的平面,l1,l2是兩條不同的直線,下列命題是真命題的是( 。
A.若α⊥γ,β⊥γ,則α∥βB.若l1∥α,l1⊥β,則α∥β
C.若α∥β,l1∥α,l2∥β,則l1∥l2D.若α⊥β,l1⊥α,l2⊥β,則l1⊥l2
E.若α⊥β,l1⊥α,l2⊥β,則l1⊥l2F.若α⊥β,l1⊥α,l2⊥β,則l1⊥l2

查看答案和解析>>

科目: 來源: 題型:填空題

2.若a>0且a≠1,函數(shù)y=ax-3+1的反函數(shù)圖象一定過點A,則A的坐標(biāo)是(2,3).

查看答案和解析>>

科目: 來源: 題型:選擇題

1.直線y=kx與曲線y=e|lnx|-|x-2|有3個公共點時,實數(shù)k的取值范圍( 。
A.$(0,\frac{1}{e})$B.(0,1)C.(1,e]D.$(\frac{1}{e},1)$

查看答案和解析>>

科目: 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=(x2-2ax)lnx+bx2,a,b∈R.
(1)當(dāng)a=1,b=-1時,設(shè)g(x)=(x-1)2lnx+x,求證:對任意的x>1,g(x)-f(x)>x2+x+e-e2;
(2)當(dāng)b=2時,若對任意x∈[1,+∞),不等式2f(x)>3x2+a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知0<a<$\frac{π}{2},-\frac{π}{2}<β<0,cos({α-β})=-\frac{3}{5}$,tanα=$\frac{4}{3}$,則sinβ=( 。
A.$\frac{7}{25}$B.$-\frac{7}{25}$C.$\frac{24}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知P在拋物線y2=4x上,那么點P到點Q(2,1)的距離與點P到拋物線焦點距離之和取得最小值為( 。
A.2B.3C.4D.6

查看答案和解析>>

科目: 來源: 題型:填空題

17.若x、y∈R+,x+4y=40,則xy的最大值為100.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知函數(shù)f(x)=sin(2x+φ1),g(x)=cos(4x+φ2),|φ1|≤$\frac{π}{2}$,|φ2|≤$\frac{π}{2}$.
命題?①:若直線x=φ是函數(shù)f(x)和g(x)的對稱軸,則直線x=$\frac{1}{2}$kπ+φ(k∈Z)是函數(shù)g(x)的對稱軸;
命題?②:若點P(φ,0)是函數(shù)f(x)和g(x)的對稱中心,則點Q(${\frac{kπ}{4}$+φ,0)(k∈Z)是函數(shù)f(x)的中心對稱.( 。
A.命題①②??都正確B.命題①②??都不正確
C.命題?①正確,命題?②不正確D.命題?①不正確,命題?②正確

查看答案和解析>>

科目: 來源: 題型:填空題

15.若x∈R,$\sqrt{y}$有意義且滿足x2+y2-4x+1=0,則$\frac{y}{x}$的最大值為$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案