相關(guān)習(xí)題
 0  235924  235932  235938  235942  235948  235950  235954  235960  235962  235968  235974  235978  235980  235984  235990  235992  235998  236002  236004  236008  236010  236014  236016  236018  236019  236020  236022  236023  236024  236026  236028  236032  236034  236038  236040  236044  236050  236052  236058  236062  236064  236068  236074  236080  236082  236088  236092  236094  236100  236104  236110  236118  266669 

科目: 來源: 題型:選擇題

19.已知cos(α+$\frac{π}{4}$)=$\frac{7\sqrt{2}}{10}$,cos2α=$\frac{7}{25}$,則sinα+cosα等于(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{1}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知四棱錐A-BCDE,其中AB=BC=AC=BE=1,CD=2,CD⊥面ABC,BE∥CD,F(xiàn)為AD的中點(diǎn).
(Ⅰ)求證:EF∥面ABC;
(Ⅱ)求四棱錐A-BCDE的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的一個(gè)焦點(diǎn)與拋物線y2=4x的焦點(diǎn)相同,F(xiàn)1,F(xiàn)2為橢圓的左、右焦點(diǎn).M為橢圓上任意一點(diǎn),△MF1F2面積的最大值為1.
(1)求橢圓C的方程;
(2)直線l:y=kx+m(m≠0)交橢圓C于A,B兩點(diǎn).
①若x軸上任意一點(diǎn)到直線AF2與BF2距離相等,求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo);
若直線l的斜率是直線OA,OB斜率的等比中項(xiàng),求△AOB面積的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知向量$\overrightarrow a=(3,2),\overrightarrow b=(x,1-y)$且$\overrightarrow a∥\overrightarrow b$,若x,y均為正數(shù),則$\frac{3}{x}+\frac{2}{y}$的最小值是( 。
A.24B.8C.$\frac{8}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

15.拋物線:y=x2的焦點(diǎn)坐標(biāo)是(  )
A.$({0\;\;,\;\;\frac{1}{2}})$B.$({0\;\;,\;\;\frac{1}{4}})$C.$({\frac{1}{2}\;\;,\;\;0})$D.$({\frac{1}{4}\;\;,\;\;0})$

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知命題p:y=loga(2-ax)在[0,1]上是減函數(shù);命題$q:y=lg(a{x^2}-x+\frac{a}{12})$的值域是R,若命題“p且q”是假命題,“p或q”是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

13.方程sin4x=sin2x在$(0,\frac{3}{2}π)$上的解集是$\left\{{\frac{π}{6},\frac{π}{2},π,\frac{5π}{6},\frac{7π}{6}}\right\}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.已知A={x|a1x2+b1x+c1>0(a1,b1,c1∈R,a1b1c1≠0)},B={x|a2x2+b2x+c2>0(a2,b2,c2∈R,a2b2c2≠0)},則A=B是$\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$成立的( 。
A.充分不必要條件B.必要不充分條件
C.既不充分也不必要條件D.充要條件

查看答案和解析>>

科目: 來源: 題型:解答題

11.如圖,四棱錐P-ABCD的底面是平行四邊形,BA=BD=$\sqrt{2}$,AD=2,PA=PD=$\sqrt{5}$,E,F(xiàn)分別是棱AD,PC的中點(diǎn).
(Ⅰ)證明 AD⊥平面PBE;
(Ⅱ)若二面角P-AD-B為60°,求直線EF與平面PBC所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的半焦距為c,若直線y=2x與橢圓的一個(gè)交點(diǎn)的橫坐標(biāo)恰好為c,則橢圓的離心率為( 。
A.$1-\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}-\frac{1}{2}$C.$\sqrt{2}-1$D.$\sqrt{3}-1$

查看答案和解析>>

同步練習(xí)冊(cè)答案