相關(guān)習(xí)題
 0  235865  235873  235879  235883  235889  235891  235895  235901  235903  235909  235915  235919  235921  235925  235931  235933  235939  235943  235945  235949  235951  235955  235957  235959  235960  235961  235963  235964  235965  235967  235969  235973  235975  235979  235981  235985  235991  235993  235999  236003  236005  236009  236015  236021  236023  236029  236033  236035  236041  236045  236051  236059  266669 

科目: 來源: 題型:選擇題

2.若三點(diǎn)A(0,8),B(-4,0),C(m,-4)共線,則實(shí)數(shù)m的值是( 。
A.6B.-2C.-6D.2

查看答案和解析>>

科目: 來源: 題型:解答題

1.對甲、乙兩名自行車賽手在相同條件下進(jìn)行了6次測試,測得他們的最大速度(m/s)的數(shù)據(jù)如表.
273830373531
33  2938342836
(1)畫出莖葉圖
(2)判斷選誰參加比賽更合適.

查看答案和解析>>

科目: 來源: 題型:填空題

20.現(xiàn)有100ml的蒸餾水,假定里面有一個(gè)細(xì)菌,現(xiàn)從中抽取20ml的蒸餾水,則抽到細(xì)菌的概率為$\frac{1}{5}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

19.若平面α⊥平面β,且平面α內(nèi)的一條直線a垂直于平面β內(nèi)的一條直線b,則(  )
A.直線a必垂直于平面βB.直線b必垂直于平面α
C.直線a不一定垂直于平面βD.過a的平面與過b的平面垂直

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{1}{x}$+alnx(a∈R,且a≠0).
(1)若函數(shù)f(x)在區(qū)間(2016,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)若在區(qū)間[1,e]上至少存在一點(diǎn)x0.使得f(x0)<0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

17.已知F是拋物線y2=2px(p>0)的焦點(diǎn),過F的直線與拋物線交于A、B兩點(diǎn),AB中點(diǎn)為C,過C作拋物線的準(zhǔn)線的垂線交準(zhǔn)線于C1點(diǎn),若CC1中點(diǎn)M的坐標(biāo)為($\sqrt{2}$,4),則p=4$\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

16.若a,b,x,y∈R,則$\left\{\begin{array}{l}{x+y>a+b}\\{(x-a)(y-b)>0}\end{array}\right.$是$\left\{\begin{array}{l}{x>a}\\{y>b}\end{array}\right.$成立的必要不充分條件.(從“充分必要”,“充分不必要”,“必要不充分”,“既不充分也不必要”中選擇適當(dāng)?shù)奶顚懀?/div>

查看答案和解析>>

科目: 來源: 題型:解答題

15.如圖,四棱錐P-ABCD中,AD∥BC,AD⊥DC,AD=2BC=2CD=2,側(cè)面APD為等腰直角三角形,∠APD=90°,平面PAD⊥平面ABCD,E為棱PC上的一點(diǎn).
(1)求證:PA⊥DE;
(2)在棱PC上是否存在一點(diǎn)E,使得二面角E-BD-A的余弦值為-$\frac{{\sqrt{3}}}{3}$,若存在,請求出$\frac{EC}{PC}$的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

14.如圖,在長方體ABCD-A1B1C1D1中,E、P分別是BC、A1D1的中點(diǎn).M、N分別是AE、CD1的中點(diǎn),AD=AA1=$\frac{1}{2}$AB=2.
(1)求證:MN∥平面ADD1A1
(2)求直線MN與平面PAE所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

13.設(shè)條件p:2x2-3x+1≤0;條件q:(x-a)[x-(a+1)]≤0.若¬p是¬q的必要不充分條件,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案